

Andrea Tramacere

https://jetset.readthedocs.io/en/latest/ https://github.com/andreatramacere/jetset https://www.facebook.com/jetsetastro/

Numerical modeling meeting Paris 21/02/2024

JetSe

Jets SED modeler and fitting Tool

- Philosophy and architecture of Jetset
- Current features and next developments
- Recent publications done with Jetset
- Conclusions

outline

the philosophy

JetSeT is an open source C/Python framework to reproduce radiative and accelerative processes acting in relativistic jets, and galactic objects (with/without jet), allowing to fit the numerical models to observed data.

the architecture (obj oriented)

emitters (leptons/

- the code can easily installed using pip or conda (single line instruction)
- easily recompiled cloning the repo (just run setup.py)
- on git I provide both releases of sources and binaries

Release 1.2.2 (Latest
github-actions released this S	Sep 15
1.2.2	
▼Assets 16	
	10.15
	10.15
Oconda-binary-1.2.2-macos-	10.15
Oconda-binary-1.2.2-ubuntu	-lates
Sconda-binary-1.2.2-ubuntu	-lates
Sconda-binary-1.2.2-ubuntu	-lates
	15-py
	15-py
	15-py
	t <mark>est-p</mark>
	t <mark>est-p</mark>
	test-p
 	tar
	.tar
Source code (zip)	
Source code (tar.gz)	

releases

	<u> </u>
toct	
iesi)

0 Û Compare 🚽

5, 2023 · 54 commits to master since this release	交 1.2.2	- 0 - 6fa9445
---	---------	----------------------

10.15-py-3.10.tar	1.32 MB	Jun 6, 2022
10.15-py-3.8.tar	1.31 MB	Jun 6, 2022
10.15-py-3.9.tar	1.32 MB	Jun 6, 2022
latest-py-3.10.tar	1.32 MB	Jun 6, 2022
latest-py-3.8.tar	1.31 MB	Jun 6, 2022
latest-py-3.9.tar	1.32 MB	Jun 6, 2022
15-py-3.7.tar	1.25 MB	Jun 6, 2022
15-py-3.8.tar	1.25 MB	Jun 6, 2022
15-py-3.9.tar	1.25 MB	Jun 6, 2022
est-py-3.7.tar	2.27 MB	Jun 6, 2022
est-py-3.8.tar	2.28 MB	Jun 6, 2022
est-py-3.9.tar	2.31 MB	Jun 6, 2022
ar	1.03 MB	Jun 6, 2022
.tar	1.04 MB	Jun 6, 2022
		Sep 7, 2023
		Sep 7, 2023

- the code is built for various linux/mac os and three different python version
- git Actions pipelines are used for CI/CD with extensive testing of the code

Summary	Manually triggered 5 months ago	Status	Total duration	Artifacts
s	andreatramacere 00a349f v1.3.x	Success	24m 20s	1
clone				
ouild_conda (macOS-12, 3.8)	test-conda-workflow.vml			
ouild_conda (macOS-12, 3.9)	on: workflow_dispatch			
ouild_conda (macOS-12, 3.10)		Matrix: build_c	onda	
uild_conda (ubuntu-latest, 3.8)				
uild_conda (ubuntu-latest, 3.9)	Clone 14s	-• 🔮 build_c	onda (macOS 22m	31s
ouild_conda (ubuntu-latest, 3.10)		🕑 build_c	onda (macOS 23m	41s
details		🕑 build_c	onda (macOS 19m	41s
Jsage		🕑 build_c	onda (ubuntu 12m	55s
/orkflow file		🕑 build_c	onda (ubuntu-l 13r	n 5s
		🕑 build_c	onda (ubuntu 12m	44s

releases

linux binaries are built on many_linux distro to ensure no issues when in installed on any linux distro

~	0	test
	12	
	13	platform linux Python 3.9.18, pytest-8.0.1, pluggy-1.4.0 /opt/hostedtoolcache/Python/3.9.18/x64/bin/python
	14	cachedir: .pytest_cache
	15	rootdir: /home/runner/work/jetset/jetset
	16	plugins: anyio-4.3.0
	18	collecting collected 5 items
	20	//::TestJets::test_build_bessel ///opt/hostedtoolcache/Python/3.9.18/x64/lib/python3.9/site-</td
		packages/jetset/tests/test_jet_model.py PASSED [20%]
	21	<pre>//::TestJets::test_jet <!--///opt/hostedtoolcache/Python/3.9.18/x64/lib/python3.9/site-packages/jetset/tests/test_jet</pre--></pre>
		PASSED [40%]
	22	//::TestJets::test_set_N_from_nuFnu ///opt/hostedtoolcache/Python/3.9.18/x64/lib/python3.9/site-</td
		packages/jetset/tests/test_jet_model.py PASSED [60%]
	23	<pre>//::TestJets::test_EC <!--///opt/hostedtoolcache/Python/3.9.18/x64/lib/python3.9/site-packages/jetset/tests/test_jet_</pre--></pre>
		PASSED [80%]
	24	//::TestJetHadronic::test_hadronic_jet ///opt/hostedtoolcache/Python/3.9.18/x64/lib/python3.9/site-</td
		packages/jetset/tests/test_jet_model.py PASSED [100%]
	25	======================================
	27	======================================
	28	platform linux Python 3.9.18, pytest-8.0.1, pluggy-1.4.0 /opt/hostedtoolcache/Python/3.9.18/x64/bin/python
	29	cachedir: .pytest_cache
	30	rootdir: /home/runner/work/jetset/jetset
	31	plugins: anyio-4.3.0
	32	collecting collected 1 item
	34	<pre>//::test <!--///opt/hostedtoolcache/Python/3.9.18/x64/lib/python3.9/site-packages/jetset/tests/test_hadronic_energeti [100%]</pre--></pre>

an example of workflow

interoperability

- You can both turn your model into a sherpa or gamma-py model,
- our just use the sherpa or gamma-py (or iminuit or emcee) fitting frontend!
- with sherpa and gamma-py you can do forward-folded model fitting taking into account responses of different datasets

interoperability: using model fitting plugins is trivial

sherpa_model_jet=JetsetSherpaModel(prefit_jet)
sherpa_model_gal=JetsetSherpaModel(my_shape.host_gal)
sherpa_model_ebl=JetsetSherpaModel(ebl_franceschini)

jetset model name R renamed to R_sh due to sherpa internal naming convention

sherpa_model=(sherpa_model_jet+sherpa_model_gal)*sherpa_model_ebl

sherpa_model

▼ Model

Expression: (jet_leptonic + host_galaxy) * Franceschini_2008

Component	Parameter	Thaw	edValue	Min	Мах	Units
	gmin	\checkmark	470.39174855643597	1.0	100000000.0	lorentz
	gmax	\checkmark	2310708.197406515	1.0	100000000000000000000000000000000000000	0.0lorentz
	Ν	\checkmark	7.087120469822453	0.0	MAX	1 / cm3
	gamma0_log_para	ab	10458.36315393129	1.0	100000000.0	lorentz
	S	\checkmark	2.2487867709713574	-10.0	10.0	
jet_leptonic	r	\checkmark	0.320557142636666	-15.0	15.0	
	R_sh	\checkmark	1.0569580559768326e+1	61000.0	1e+30	cm
	R_H	\checkmark	1e+17	0.0	MAX	cm
	В	\checkmark	0.0505	0.0	MAX	gauss
	beam_obj	\checkmark	25.0	0.0001	MAX	lorentz
	z_cosm	\checkmark	0.0336	0.0	MAX	
hest seleve	nuFnu_p_host	\checkmark	-10.062787651081644	-12.254122641	095535-8.254122641095	535 erg / (c
nost_galaxy	nu_scale	\checkmark	0.017307503006438463	-0.5	0.5	Hz
Franceschini_20	08 <mark>z_cosm</mark>	\checkmark	0.0336	0.0	MAX	

sherpa_model_ebl.z_cosm = sherpa_model_jet.z_cosm

gammapy_jet_model=GammapyJetsetModelFactory(jet)
gammapy_jet_model.parameters.to_table()

Table length=9

type	name	value	unit	error	min	max	frozen	link
str8	str9	float64	str4	int64	float64	float64	bool	str1
spectral	gmin	2.0000e+00		0.000e+00	1.000e+00	1.000e+09	False	
spectral	gmax	1.0000e+06		0.000e+00	1.000e+00	1.000e+15	False	
spectral	Ν	1.0000e+02	cm-3	0.000e+00	0.000e+00	nan	False	
spectral	gamma_cut	1.0000e+04		0.000e+00	1.000e+00	1.000e+09	False	
spectral	R	5.0000e+15	cm	0.000e+00	1.000e+03	1.000e+30	False	
spectral	R_H	1.0000e+17	cm	0.000e+00	0.000e+00	nan	True	
spectral	В	1.0000e-01	G	0.000e+00	0.000e+00	nan	False	
spectral	beam_obj	1.0000e+01		0.000e+00	1.000e-04	nan	False	
spectral	z_cosm	1.0000e-01		0.000e+00	0.000e+00	nan	False	

print(gammapy_jet_model)

GammapyJetsetModel

type	name	value	unit	error	min	max	frozen	link
spectral	gmin	2.0000e+00		0.000e+00	1.000e+00	1.000e+09	False	
spectral	gmax	1.0000e+06		0.000e+00	1.000e+00	1.000e+15	False	
spectral	N	1.0000e+02	cm-3	0.000e+00	0.000e+00	nan	False	
spectral	gamma_cut	1.0000e+04		0.000e+00	1.000e+00	1.000e+09	False	
spectral	R	5.0000e+15	CM	0.000e+00	1.000e+03	1.000e+30	False	
spectral	R_H	1.0000e+17	CM	0.000e+00	0.000e+00	nan	True	
spectral	В	1.0000e-01	G	0.000e+00	0.000e+00	nan	False	
spectral	beam_obj	1.0000e+01		0.000e+00	1.000e-04	nan	False	
spectral	z_cosm	1.0000e-01		0.000e+00	0.000e+00	nan	False	

z-factor* z-factor* 3 z-factor*

-factor*

cm2 s)

model con be easily combined using math expression

composite_model.composite_expr='(jet_flaring + steady_jet) * Franceschini_2008'

User customization

parameters can be easily linked with functions

```
fit_model.jet_leptonic.add_user_par(name='B0',units='G',val=1E3,val_min=0,val_max=None)
fit_model.jet_leptonic.add_user_par(name='R0', units='cm', val=5E13, val_min=0, val_max=None)
fit_model.jet_leptonic.add_user_par(name='m_B', val=1, val_min=1, val_max=2)
fit_model.jet_leptonic.parameters.R0.frozen=True
fit_model.jet_leptonic.parameters.B0.frozen=True
```

```
def par_func(R0,B0,R_H,m_B):
   return B0*np.power((R0/R_H),m_B)
```

```
fit_model.jet_leptonic.make_dependent_par(par='B', depends_on=['B0', 'R0', 'R_H','m_B'], par_expr=par_func)
fit_model.parameters
```

```
==> par B is now depending on ['B0', 'R0', 'R_H', 'm_B'] according to expr:B =
def par_func(R0,B0,R_H,m_B):
   return B0*np.power((R0/R_H),m_B)
```

User customization

users can easily define custom distribution for electrons and protons

```
def distr_func_bkn(gamma_break,gamma,s1,s2):
    return np.power(gamma,-s1)*(1.+(gamma/gamma_break))**(-(s2-s1))
n_e_bkn=EmittersDistribution('bkn', spectral_type='bkn')
n_e_bkn.add_par('gamma_break',par_type='turn-over-energy',val=1E3,vmin=1., vmax=None, unit='lorentz-factor')
n_e_bkn.add_par('s1',par_type='LE_spectral_slope',val=2.5,vmin=-10., vmax=10, unit='')
n_e_bkn.add_par('s2',par_type='HE_spectral_slope',val=3.2,vmin=-10., vmax=10, unit='')
n_e_bkn.set_distr_func(distr_func_bkn)
n_e_bkn.parameters.show_pars()
n_e_bkn.parameters.s1.val=2.0
n_e_bkn.parameters.s2.val=3.5
p=n_e_bkn.plot()
```

Table	length=6
10010	i chigan o

name	par type	units	val	phys. bound. min	phys. bound.
gmin	low-energy-cut-off	lorentz-factor*	2.000000e+00	1.000000e+00	1.000000e+09
gmax	high-energy-cut-off	lorentz-factor*	1.000000e+06	1.000000e+00	1.000000e+15
Ν	emitters_density	1 / cm3	1.000000e+02	0.000000e+00	
gamma_break	turn-over-energy	lorentz-factor*	1.000000e+03	1.000000e+00	
s1	LE_spectral_slope		2.500000e+00	-1.000000e+01	1.000000e+01
s2	HE_spectral_slope		3.200000e+00	-1.000000e+01	1.000000e+01

User customization

False False

$$W(k) = \frac{\delta B(k_0^2)}{8\pi} \left(\frac{k}{k_0}\right)^{-q}$$

JetSeT radio-gamma delay and adb. exp. self-consistent approach

an examplem of temporal evolution with multiple injections

6

6

6

8

8

FACT telescope, E>700GeV 0.8 0.6 Density 0.4 gamma 0.2 0.0 0.0 2.5 5.0 flux 10 1.0 Swift XRT, 2-10keV X 0.8 0.6 0.4 flux 0.2 10 0.0 0.0 2.5 5.0 flux radio 10

0.0 + 0.00

0.25

0.50

0.75

Observed datasets (Mrk 421)

7.5

7.5

OVRO 15 GHz

1.75

1.50

1.00 flux

1.25

10.0

10.0

hadronic pp model (following Kelner&Aharonian 2006)

MQ plugin

Rodi, Tramacere+ ApJ2020

MQ plugin: Best fit model

						Best f	it model para	meters
6			model name	par. name	units	best fit va	lue error	starti
. Comp.	- 3		JetAcc	$N_{e,acc}$	cm^{-3}	9.998×10^{11}	0.001×10^{11}	$1.0 \times$
model			"	s		2.082	0.007	2.
etset			"	γ_{cut}		65.4	1.7	6
	- 2		"	R_{acc}	cm	2.6×10^9	1.0×10^1	$2.6 \times$
			"	z_{acc}	cm			$2.8 \times$
	L 1	_	"	B_{acc}	G	17986	1.0×10^{-3}	179
	1	(m)y	"	$ heta_{jet}$	\deg			6
		(Fv)	"	Γ_{jet}				2.1
	- 0	boj	RadioJet	z_{inj}				$2.5 \times$
			"	N_{frac}				1
	1		"	K_B^{start}				1
	-1		"	K_{R}^{end}				300
			"	miet		1.203	0.001	1.
	2			jet				
	1							

par. name	units	value	setup value
q_{jet}		> 0.15	0.20
U_e/U_B		0.18	_
N_e^{acc}/N_p^{cold}		< 94	_
L_{jet}^{acc}	${\rm erg}~{\rm s}^{-1}$	$> 8.0 \times 10^{37}$	_
L_{rad}^{acc}	${\rm erg}~{\rm s}^{-1}$	1.1×10^{36}	—
L_B^{acc}	${\rm erg}~{\rm s}^{-1}$	$3.6 imes 10^{37}$	3.6×10^{37}
L_e^{acc}	${\rm erg}~{\rm s}^{-1}$	$6.6 imes 10^{36}$	_
L_p^{acc}	${\rm erg~s^{-1}}$	$> 3.6 \times 10^{37}$	$> 3.6 \times 10^{37}$

Short term: new features in version 1.3.x

- Updated EBL models (Dominguez+23, Saldana-Lopez+21)
 - C threads (speed up more effective compare to python threads, at least 3x!)
- • optical depth (BLR, DT, and generic fields)
- bulk Compton emissions
 - Synchrotron polarization (one region and multi-region, stochastic model with a dedicated plugin)
- Improved serialization (removed pickle issues, e.g. astropy, numba etc...)

3ML plugin

GRB plugin

in progress...

p-gamma emission (following Kelner&Aharonian 2008, in collaboration with Ankur Sharma)

Short term: new features in version 1.3.x

\checkmark reproduction of MAGIC paper Nature Astronomy, Volume 6, p. 689-697

etSeT

Extended plugins for Galactic objects (this can be fully user implemented/modified):

Short term: new features in version 1.3.x

j_spherical_shell.parameters.B.val=1E-3

Extended plugins for Galactic objects (this can be fully user implemented/modified): reproduction of MAGIC paper Nature Astronomy, Volume 6, p. 689-697

etSeT

1 def build_nova_expanding_shell(E_k=1E40,emitters_type='electrons',emitters_distribution='bkn'): j_spherical_shell=build_expanding_spherical_shell(add_EC_star=True,sync='self-abs',emitters_type=emitters_type,emitters_distribution=emitters_distribution)

```
j_spherical_shell.parameters.T_Star.val=6000
j_spherical_shell.parameters.gmax.val=1E3
j_spherical_shell.parameters.v_sh.val=4500
j_spherical_shell.parameters.L_Star.val=4E43
j_spherical_shell.set_external_field_transf('disk')
x=u.M_sun
j_spherical_shell.add_user_par(name='M_ej',units=x,val=0.1,val_min=0,val_max=None)
def par_func_N(M_ej,R_sh,h_sh):
    determines the accelerated proton density from M_ej and shell volume
    Eq. 4 in the paper
    vol=4/3*np.pi*R_sh**3*((1+h_sh)**3 -1)*u.Unit('cm3')
    N= M_ej.cgs/(vol*constants.m_p.cgs)
    return N
if emitters_type == 'protons':
    j_spherical_shell.add_user_par('NH_pp_ratio',val=1E-5,val_min=0, val_max=1000)
    def par_func_NH_pp(N,NH_pp_ratio):
        This should come form Eq. 5, but I did not find the relevant parameters in the paper.
        Anyhow, the n_ej>>n_target, I paramtrize it as function of n_je i.e. accelerated proton density
        ......
        return N*NH_pp_ratio
    j_spherical_shell.make_dependent_par(par='NH_pp', depends_on=['N','NH_pp_ratio'], par_expr=par_func_NH_pp)
j_spherical_shell.make_dependent_par(par='N', depends_on=['M_ej', 'R_sh', 'h_sh'], par_expr=par_func_N)
def par_func_M_ej(E_k,v_sh):
    mass of the ejecta from Eq. 11
```

return (2*E_k*u.erg/(v_sh.cgs)**2)/((u.M_sun).to('g'))

j_spherical_shell.add_user_par(name='E_k',units='erg',val=1E40,val_min=0,val_max=None)

```
j_spherical_shell.make_dependent_par(par='M_ej', depends_on=['E_k', 'v_sh'], par_expr=par_func_M_ej)
j_spherical_shell.parameters.E_k.val=1E42
return j_spherical_shell
```


Mid term: v2.x.x

• Transition form C to C++. Already working minimal version.

Documentation

JetSeT doc

etSe |

1.2.2

JetSeT - Page - Installation » Source

Documentation:

installation

what's new in jetset 1.2.2 and bug fixing

user guide

code documentation (API)

bibliography

New/updated in v 1.2.2-1.2.0:

Depending parameters

Composite Models and depending pars

Custom emitters distribution

Physical setup

Hadronic pp jet model

Temporal evolution, one zone, only cooling

Temporal evolution, two zones, cooling+acc

Temporal evolution, two zones, cooling+acc+adb exp

Phenomenological model constraining: SSC theory

Example to use the Sherpa plugin with the sherpa interface

Example to use the Sherpa minimizer plugin with a JeSeT model

Example to use the Gamma-py plugin with the JeSeT interface

Galactic object models

Source

Jets SED modeler and fitting Tool

Author: Andrea Tramacere

JetSeT is an open source C/Python framework to reproduce radiative and accelerative processes acting in relativistic jets, and galactic objects (beamed and unbeamed), allowing to fit the numerical models to observed data. The main features of this framework are:

- Synchrotron Self-Compton (SSC), external Compton (EC) and EC against the CMB
- (iminuit) and bayesian MCMC sampling (emcee)
- (stochastic acceleration) processes are implemented.

Important

Acknowledgements: if you use this code in any kind of scientific publication please cite the following papers:

- Tramacere A. 2020
- Tramacere A. et al. 2011
- Tramacere A. et al. 2009

Documentation:

- installation
- what's new in jetset 1.2.2 and bug fixing
- user guide
- code documentation (API)
- bibliography

New/updated in v 1.2.2-1.2.0:

Search

• handling observed data: re-binning, definition of data sets, bindings to astropy tables and quantities definition of complex numerical radiative scenarios:

• Constraining of the model in the pre-fitting stage, based on accurate and already published phenomenological trends. In particular, starting from phenomenological parameters, such as spectral indices, peak fluxes and frequencies, and spectral curvatures, that the code evaluates automatically, the pre-fitting algorithm is able to provide a good starting model, following the phenomenological trends that I have implemented. fitting of multiwavelength SEDs using both frequentist approach

• Self-consistent temporal evolution of the plasma under the effect of radiative, accelerative processes, and adiabatic expansion. Both first order and second order

Documentation

- The documentation leads users to non-black-box usage
- extensive theory background added here

Some recent scientific results

hadronic pp model

Table 5. Best-fit parameters of π^0 decay-dominated VHE-UHE emission of LHAASO J2108+5157 for both molecular clouds in the direction of the source.

Parameter	Best fit value		Frozen
	Cloud 1	Cloud 2	-
$n [\rm cm^{-3}]$	115	240	True
d [kpc]	3.1	2.0	True
R [pc]	7.1	4.5	True
$\gamma_{\rm min}$ [×10 ⁵]	1.6 ± 0.5	1.6 ± 5	False
$\gamma_{\rm max}$ [×10 ⁶]	1.0	1.0	True
B [mG]	9 ± 5	≤ 8	False
$N [\times 10^{-15} \mathrm{cm}^{-3}]$	4 ± 1	3 ± 1	False
α	2.75	2.75	True

Notes. The injected protons are assumed to be distributed according to ECPL with γ -factor in the range (γ_{min} , γ_{max}), cutoff at γ_{cut} , spectral index α , and total numeric density N.

- both and gamma and neutrino emission

A&A 673, A75 (2023) https://doi.org/10.1051/0004-6361/202245086 © The Authors 2023

Multiwavelength study of the galactic PeVatron candidate LHAASO J2108+5157

S. Abe¹, A. Aguasca-Cabot², I. Agudo³, N. Alvarez Crespo⁴, L. A. Antonelli⁵, C. Aramo⁶, A. Arbet-Engels⁷, M. Artero⁸, K. Asano¹, P. Aubert⁹, A. Baktash¹⁰, A. Bamba¹¹, A. Baquero Larriva¹², L. Baroncelli¹³,

pp MW model fitting (iminuit plugin) with temporal evolution of secondaries

MAGIC paper I

A&A, 682, A114 (2024) https://doi.org/10.1051/0004-6361/202347845 © The Authors 2024

Multi-year characterisation of the broad-band emission from the intermittent extreme BL Lac 1ES 2344+514

MAGIC Collaboration: H. Abe¹, S. Abe¹, V. A. Acciari², I. Agudo³, T. Aniello⁴, S. Ansoldi^{5,42}, L. A. Antonelli⁴, A. Arbet Engels^{6,*}, C. Arcaro⁷, M. Artero⁸, K. Asano¹, D. Baack⁹, A. Babić¹⁰, A. Baquero¹¹, U. Barres de Almeida¹², I. Batković⁷, J. Baxter¹, J. Becerra González², E. Bernardini⁷, J. Bernete¹³, A. Berti⁶, J. Besenrieder⁶, C. Bigongiari⁴,

SED Model fitting

Astronomy **A**strophysics

Time-evolved

Leptonic modeling (Jetset and Naima), and comparison with **leptohadronic codes (LeHa and Soaprano)**

MAGIC paper II

THE ASTROPHYSICAL JOURNAL SUPPLEMENT SERIES, 266:37 (43pp), 2023 June © 2023. The Author(s). Published by the American Astronomical Society. **OPEN ACCESS**

Multimessenger Characterization of Markarian 501 during Historically Low X-Ray and γ -Ray Activity

H. Abe¹, S. Abe¹, V. A. Acciari², I. Agudo³, T. Aniello⁴, S. Ansoldi^{5,98}, L. A. Antonelli⁴, A. Arbet-Engels⁶, C. Arcaro⁷, M. Artero⁸, K. Asano¹, D. Baack⁹, A. Babić¹⁰, A. Baquero¹¹, U. Barres de Almeida¹², J. A. Barrio¹¹, I. Batković⁷, J. Baxter¹, J. Becerra González², W. Bednarek¹³, E. Bernardini⁷, M. Bernardos³, M. Bernardos⁴, M. Bernardos⁴, M. Bernardos⁴, M. Bernardos⁴, M. Bernardos⁵, M. Bernardos⁶, M. Bernardo

MNRAS 000, 1–20 (2022)

Broadband Study of Gamma-Ray Blazars at Redshifts z = 2.0 - 2.5

N. Sahakyan¹, * G. Harutyunyan¹, S. Gasparyan¹, D. Israyelyan¹

¹ICRANet-Armenia, Marshall Baghramian Avenue 24a, Yerevan 0019, Armenia

Repeating flaring activity of the blazar AO 0235+164

J. Escudero Pedrosa¹, I. Agudo¹, A. Tramacere², A. P. Marscher³, S. Jorstad^{3,12}, Z. R. Weaver³, C. Casadio^{5,4}, C. Thum⁶, I. Myserlis⁶, A. Fuentes¹, E. Traianou¹, J.-Y. Kim^{7,8}, J. Kramer⁷, R. López-Coto¹, F. D'Ammando⁹, M. Bernardos¹, G. Bonnoli^{10,1}, D. A. Blinov^{4,5}, G. A. Borman¹¹, T. S. Grishina¹², V. A. Hagen-Thorn¹², E. N. Kopatskaya¹², E. G. Larionova¹², V. M. Larionov¹², L. V. Larionova¹², D. A. Morozova¹², S. S. Savchenko^{12,13,14}, I. S. Troitskiy¹², Y. V. Troitskaya¹², and A. A. Vasilyev¹²

Pro

- So far Jetset is a successful project
- teaching and PhD/Master thesis
- into an open source project used by the community

Conclusions

Used for publications by large collaboration and small group os scientists, for

Great fun in turning a personal code (start date Nov. 2000 for my master thesis)

Cons

- Time consuming (coding, CI/CD, documentation...)
- So far the project was developed only by me, but contributors are super welcome (thanks Ankur for being the first active contributors!)
- Overlapping! As of today, we have plenty of code, with plenty of overlapping features

The future: a collaborative effort!

- Would be great to turn (at leas a fraction) of the active projects into a single effort (a la astropy), combining the strength of different codes
- In particular building basic blocks with a flexible interface (in python), and strong underlying C/C++ engine
- leaving to the user the capability to customize their final models

Conclusions

