

OneHaLe: a One-zone Hadro-Leptonic code

Michael Zacharias

Workshop on Numerical Multi-messenger Modeling

Paris, France

Table of Content

- 1) Overview of the code
- 2) Scientific examples
- 3) Ongoing work
- 4) ExHaLe-Jet

OneHaLe is...

10.0	: Magnetic field of the homogeneous region [G]
1.00e15	: Blob radius [cm]
5.00	: Ratio of the acceleration to escape time scales
0.125	: Redshift to the source
50.0	: Bulk Lorentz factor for the blob
2.00e-2	: Observing angle relative to the axis of the BH jet [rad]
2.00e+0	: Minimum Lorentz factor for the proton injection spectrum
4.00e+10	: Maximum Lorentz factor for the proton injection spectrum
2.30	: Proton injection index
5.00e+41	: Injection luminosity for the proton spectrum [erg s^(-1)]
2.0e+3	: Minimum Lorentz factor for the electron injection spectrum
9.0e+4	: Maximum Lorentz factor for the electron injection spectrum
1.50	: Electron spectral index
3.50e+38	: Injection luminosity for the electron spectrum [erg s^(-1)]
50.0	: Multiplicative factor of the light travel time [eta*R/c]
1.8	: Mass of the supermassive black hole (1.0e+8 M_sol)
5.0e-4	: Eddington ratio
1.00e+18	: Initial location of the blob along jet axis [cm]
7.60e+16	: Radius of the BLR [cm]
1.0e+0	: Effective temperature of the BLR [K]
2.30e+24	: Effective luminosity of the BLR [erg/s]
4.20e+18	: Radius of the DT [cm]
5.0e+0	: Effective temperature of the DT [K]
3.0e+24	: Effective luminosity of the DT [erg/s]
0	: Calculate neutrino detection rate using ICECube effective areas (0=no,
0.0	: Strength of the magnetic field perturbation [G]
0.0e+43	: Strength of the proton injection luminosity perturbation [erg/s]
0.0	: Strength of the acceleration time scale perturbation
0.0e+1	: Strength of the minimum proton Lorentz factor perturbation
0.0e+9	: Strength of the maximum proton Lorentz factor perturbation
0.0e+42	: Strength of the electron injection luminosity perturbation
0.0	: Strength of the proton index perturbation
0.0	: Strength of the electron index perturbation

Example of the parameter input file.

Gory details:

- Zacharias, M., 2021, Physics, 3, 1098
- Zacharias, M., et al., 2022, MNRAS, 512, 3948

- ... a time-depdendent, parallelized, hadro-leptonic, one-zone C code
- ... very flexible to accommodate various kinds of variability
- in each time step solves the Fokker-Planck equation for every particle species using the Chang&Cooper routine, the radiation transport equation, and obtains the neutrino output
- Pion and Muon evolution explicitly calculated (following Hümmer+10)
- includes external photon fields: accretion disk, BLR, DT, CMB
- particle-photon interactions involve internal and external photon fields
- tests suggests good agreement with the "Hadronic Code Comparison" project

$$\frac{\partial n_i(\chi,t)}{\partial t} = Q_i(\chi) + \frac{\partial}{\partial \chi} \left[\frac{\chi^2}{(a+2)t_{\rm acc}} \frac{\partial n_i(\chi,t)}{\partial \chi} \right] - \frac{\partial}{\partial \chi} \left(\dot{\chi}_i n_i(\chi,t) \right) - \frac{n_i(\chi,t)}{t_{\rm esc}} - \frac{n_i(\chi,t)}{\gamma t_{i,\rm decay}^*}$$

with normalized momentum $\chi = \gamma \beta$.

Particle injection Acceleration processes Cooling processes Particle escape Particle decay

$$\frac{\partial n_i(\chi,t)}{\partial t} = \mathbf{Q}_i(\chi) + \frac{\partial}{\partial \chi} \left[\frac{\chi^2}{(a+2)t_{\rm acc}} \frac{\partial n_i(\chi,t)}{\partial \chi} \right] - \frac{\partial}{\partial \chi} \left(\dot{\chi}_i n_i(\chi,t) \right) - \frac{n_i(\chi,t)}{t_{\rm esc}} - \frac{n_i(\chi,t)}{\gamma t_{i,\rm decay}^*}$$

with normalized momentum $\chi = \gamma \beta$.

Particle injection

Primary proton and electron (incl. positrons) distributions are injected in each time step according to $Q_i(\chi) = q_{0,i}\gamma^{-s}$

between a minimum and maximum Lorentz factor and $q_{0,i}$ depending on input parameters

- Charged pion injection following Hümmer+10
- Muon injection from pion decay
- Secondary electron injection from muon decay, Bethe-Heitler pair production and γ - γ pair production Acceleration processes

Cooling processes

Particle escape

Particle decay

$$\frac{\partial n_i(\chi,t)}{\partial t} = Q_i(\chi) + \frac{\partial}{\partial \chi} \left[\frac{\chi^2}{(a+2)t_{\rm acc}} \frac{\partial n_i(\chi,t)}{\partial \chi} \right] - \frac{\partial}{\partial \chi} \left(\dot{\chi}_i n_i(\chi,t) \right) - \frac{n_i(\chi,t)}{t_{\rm esc}} - \frac{n_i(\chi,t)}{\gamma t_{i,\rm decay}^*} \right]$$

with normalized momentum $\chi = \gamma \beta$.

Particle injection

Acceleration processes

- Fermi I/II, but only as a "re-acceleration"
- Main acceleration through a generic injection term
- $t_{\rm acc}$ is a free parameter

Cooling processes

Particle escape

Particle decay

$$\frac{\partial n_i(\chi,t)}{\partial t} = Q_i(\chi) + \frac{\partial}{\partial \chi} \left[\frac{\chi^2}{(a+2)t_{\rm acc}} \frac{\partial n_i(\chi,t)}{\partial \chi} \right] - \frac{\partial}{\partial \chi} \left(\dot{\chi}_i n_i(\chi,t) \right) - \frac{n_i(\chi,t)}{t_{\rm esc}} - \frac{n_i(\chi,t)}{\gamma t_{i,\rm decay}^*} \right]$$

with normalized momentum $\chi = \gamma \beta$.

Particle injection Acceleration processes Cooling processes

- Protons: synchrotron, adiabatic, p- γ , Bethe-Heitler
- Charged pions / muons: synchrotron, adiabatic

Electrons: synchrotron, adiabatic, inverse Compton
 Particle escape
 Particle decay

$$\frac{\partial n_i(\chi,t)}{\partial t} = Q_i(\chi) + \frac{\partial}{\partial \chi} \left[\frac{\chi^2}{(a+2)t_{\rm acc}} \frac{\partial n_i(\chi,t)}{\partial \chi} \right] - \frac{\partial}{\partial \chi} \left(\dot{\chi}_i n_i(\chi,t) \right) - \frac{n_i(\chi,t)}{t_{\rm esc}} - \frac{n_i(\chi,t)}{\gamma t_{i,\rm decay}^*}$$

with normalized momentum $\chi = \gamma \beta$.

Particle injection Acceleration processes Cooling processes Particle escape

Escape mimics an advective motion of the plasma through the emission region:

```
t_{
m esc} = \eta_{
m esc} R/c with free parameter \eta_{
m esc} \geq 1
```

Particle decay

$$\frac{\partial n_i(\chi,t)}{\partial t} = Q_i(\chi) + \frac{\partial}{\partial \chi} \left[\frac{\chi^2}{(a+2)t_{\rm acc}} \frac{\partial n_i(\chi,t)}{\partial \chi} \right] - \frac{\partial}{\partial \chi} \left(\dot{\chi}_i n_i(\chi,t) \right) - \frac{n_i(\chi,t)}{t_{\rm esc}} - \frac{n_i(\chi,t)}{\gamma t_{i,\rm decay}^*}$$

with normalized momentum $\chi = \gamma \beta$.

Particle injection Acceleration processes Cooling processes Particle escape

Particle decay

For muons and pions only with the decay time given in the proper frame of each particle

$$\frac{\partial n_{\rm ph}(\nu,t)}{\partial t} = \frac{4\pi}{h\nu} j_{\nu}(t) - n_{\rm ph}(\nu,t) \left(\frac{1}{t_{\rm esc,ph}} + \frac{1}{t_{\rm abs}}\right)$$

Photon production Photon escape Photon absorption processes

$$\frac{\partial n_{\rm ph}(\nu, t)}{\partial t} = \frac{4\pi}{h\nu} j_{\nu}(t) - n_{\rm ph}(\nu, t) \left(\frac{1}{t_{\rm esc, ph}} + \frac{1}{t_{\rm abs}}\right)$$

Photon production

- Synchrotron (all particles)
- Inverse-Compton (electrons) on all radiation fields (external photon fields: angle-averaged in the comoving frame after boosting + delta-function approximation to one of the integrals for each IC/ext process)
- Neutral pions decay directly to γ's

Photon escape

Photon absorption processes

$$\frac{\partial n_{\rm ph}(\nu, t)}{\partial t} = \frac{4\pi}{h\nu} j_{\nu}(t) - n_{\rm ph}(\nu, t) \left(\frac{1}{t_{\rm esc, ph}} + \frac{1}{t_{\rm abs}}\right)$$

Photon production

Photon escape

Photons leave the source with average escape time

 $t_{
m esc,ph} = 0.75\,R/c$

Photon absorption processes

$$\frac{\partial n_{\rm ph}(\nu, t)}{\partial t} = \frac{4\pi}{h\nu} j_{\nu}(t) - n_{\rm ph}(\nu, t) \left(\frac{1}{t_{\rm esc, ph}} + \frac{1}{t_{\rm abs}}\right)$$

Photon production

Photon escape

Photon absorption processes

- Bethe-Heitler and γ - γ pair production processes using all photon fields (external ones angle-averaged in the comoving frame after boosting)
- Synchrotron-self absorption
- Photons that left the emission region, are also absorbed in the BLR and DT fields (but no EBL or CMB absorption considered) if applicable

Scientific Example 1: Moving and expanding blob

Expansion of blobs in a conical jet

(taken from Boula&Mastichiadis22)

- The blazar one-zone model typically assumes a constant radius of the emission region
- If the emission region moves, the blob should expand adiabatically due to its higher pressure compared to the jet medium
- Expansion: $R(t) = R_0 + \alpha ct$
- Escape of particles:

 $t_{
m esc}(t) = \eta_{
m esc} R(t) / c = t_0 + \eta_{
m esc} \alpha t$ with $t_0 = \eta_{
m esc} R_0 / c$

- If the blob expands rapidly ($\eta_{esc} \alpha \rightarrow 1$), particles are trapped efficiently and particles accumulate
- For constant bulk flow Γ , *time* and *distance from BH* are related linearly $z \propto \beta_{\Gamma} ct$ (comoving frame!)

Simulating a cascade based on PKS 1510-089

Simulations without cascade.

- Using a parameter set based on PKS 1510-089, an FSRQ at z = 0.361 with bright AD, BLR, DT
- Magnetic field evolution: B(z) = B₀ R₀/R(z) (assuming dominating toroidal structure)
- Curves are shown for increasing opening angles (*dark to light*):
 η_{esc}α ∈ [0.1, 0.3, 0.5, 0.7, 0.9]
- Vertical lines mark: t₀ (red), passing BLR (blue), passing DT (magenta)
- Note: $\Delta t^{\rm obs} = \Delta z' / (\delta \Gamma \beta_{\Gamma} c)$

Simulations without cascade

Simulations without cascade.

- **VHE** emission absorbed within the BLR; shows a secondary bump in hadronic sims for large opening angles at t_{DT}
 - **HE** shows a quick rise to peak at t_0 ; flare over at t_{BLR} ; minor difference in the decay pattern
 - **X** rise a bit slower than HE; secondary peak at t_{BLR} for small opening angles; this influences the decay pattern; very minor secondary flare at t_{DT}

R similar to X-ray

Simulations with cascade

Simulations with cascade (dashed lines).

- **VHE** similar to sim w/o cascade, but secondary bump in hadronic sims for large opening angles at t_{DT} much stronger
 - **HE** leptonic sim similar to w/o cascade except for slightly higher peak flux; much higher peak fluxed (off scale) in hadronic sim, but also quick decline
 - X leptonic sim with higher peak flux, but similar decay pattern except for more pronounced secondary flare at t_{DT} for large opening angles; hadronic sim with much higher peak flux (off scale) and much stronger secondary peak at t_{DT} for large opening angles
 - **R** not influenced by the cascade

Gory details:

- Zacharias, M., 2023, A&A, 669, A151

Scientific Example 2: Steady-state modeling of eHBLs

- eHBLs exhibit the most extreme peak frequencies among blazars
- Can exhibit (long-term) variability
- Study to model 4 eHBLs with various models (SSC, *e-p-shock*, LHp, LHπ)
- Used OneHaLe in steady-state for the LH models

Modeling various states of RGB J0710+591

Scientific Example 2: Steady-state modeling of eHBLs

- SSC, *e-p-shock* and LHp with good fits
- SSC with least power consumption
- *e-p-shock* with best physical setup and good power demand
- LHp with excessive power demand
- LH π parameters chosen such to suppress SSC, no good fits, excessive power demand
- Interestingly, upper limits on AD suggest that power output of eHBL is above the AD power (irrespective of model)

Gory details:

- Goswami, P., et al., 2024, A&A, 682, A134

Modeling various states of RGB J0710+591

Ongoing development

Version 1.1 (current version)

- Available upon reasonable request to me
- hdf5 usage optional (but Bethe-Heitler only with hdf5)
- Output written to individual ascii files
- Variability limited to certain shapes, unless one digs into the code

Ongoing development

Version 1.1 (current version)

- Available upon reasonable request to me
- hdf5 usage optional (but Bethe-Heitler only with hdf5)
- Output written to individual ascii files
- Variability limited to certain shapes, unless one digs into the code

Version 2.0 (in development)

- Full hdf5 (output written to single hdf5 file with python script for first look plots and to produce ascii files if wanted)
- Variability patterns easy to change for the user
- () Include neutrons
- () Further user-friendliness improvements
- () Upload to GitHub

Ongoing development

Version 1.1 (current version)

- Available upon reasonable request to me
- hdf5 usage optional (but Bethe-Heitler only with hdf5)
- Output written to individual ascii files
- Variability limited to certain shapes, unless one digs into the code

Version 2.0 (in development)

- Full hdf5 (output written to single hdf5 file with python script for first look plots and to produce ascii files if wanted)
- Variability patterns easy to change for the user
- () Include neutrons
- () Further user-friendliness improvements
- () Upload to GitHub

Further plans:

- Tabulate more integrals, remove delta-approximations
- Switch γ-γ pair production cross section from Aharonian+83 to Böttcher&Schlickeiser97
- Allow for restart of sim after certain checkpoints
- Any suggestions?

ExHaLe-jet: An Extended Hadro-Leptonic jet model

Sketch: jet cut into numerous slices (dark), in which the kinetic equations for each particle species are solved Figure:

courtesy of Jonathan Heil

- Core functionality as OneHaLe
- Jet length cut into numerous slices, where kinetic equation is solved for each species
 - Injection of primary proton and electron distribution at the base; evolved self-consistently along the jet
 - Injection of secondaries (pions, muons, pairs) in each slice
 - Pairs propagated along with primaries
 - Radiation and neutrino output for each slice
- Geometry currently fixed as
 - Parabolic acceleration region: $\Gamma_b(z) \propto \sqrt{z}$
 - Conical coasting region $\Gamma_b(z) = \text{const.}$
 - Radius: $R(z) \propto \tan \left[0.26/\Gamma_b(z)\right]$
 - Magnetic field derived with Bernoulli equation
- Code not for public use as of now

Gory details:

- Zacharias, M., et al., 2022, MNRAS, 512, 3948

ExHaLe-jet: Total spectra

- Strong external fields
- High Compton dominance
- Most flux $\sim z_{
 m acc}$
- Total power sub-Eddington
- Moderate neutrino number

Weak external fields

- Low Compton dominance
- Most flux $\sim z_{
 m acc}$
- Total power sub-Eddington
- Low neutrino number

P-syn solution

- P flux < 0.5*z*_{acc}
- E flux < 10*z*_{acc}
- Total power sub-Eddington and p dominated
- High neutrino number

SSC solution

- Low Compton dominance
- Most flux $\sim z_{
 m acc}$
- SSC drops faster than syn
- Total power sub-Eddington and e dominated

Famous last words...

10.0	: Magnetic field of the homogeneous region [G]
1.00e15	: Blob radius [cm]
5.00	: Ratio of the acceleration to escape time scales
0.125	: Redshift to the source
50.0	: Bulk Lorentz factor for the blob
2.00e-2	: Observing angle relative to the axis of the BH jet [rad]
2.00e+0	: Minimum Lorentz factor for the proton injection spectrum
4.00e+10	: Maximum Lorentz factor for the proton injection spectrum
2.30	: Proton injection index
5.00e+41	: Injection luminosity for the proton spectrum [erg s^(-1)]
2.0e+3	: Minimum Lorentz factor for the electron injection spectrum
9.0e+4	: Maximum Lorentz factor for the electron injection spectrum
1.50	: Electron spectral index
3.50e+38	: Injection luminosity for the electron spectrum [erg s^(-1)]
50.0	: Multiplicative factor of the light travel time [eta*R/c]
1.8	: Mass of the supermassive black hole (1.0e+8 M_sol)
5.0e-4	: Eddington ratio
1.00e+18	: Initial location of the blob along jet axis [cm]
7.60e+16	: Radius of the BLR [cm]
1.0e+0	: Effective temperature of the BLR [K]
2.30e+24	: Effective luminosity of the BLR [erg/s]
4.20e+18	: Radius of the DT [cm]
5.0e+0	: Effective temperature of the DT [K]
3.0e+24	: Effective luminosity of the DT [erg/s]
0	: Calculate neutrino detection rate using ICECube effective areas (0=no,
0.0	: Strength of the magnetic field perturbation [G]
0.0e+43	: Strength of the proton injection luminosity perturbation [erg/s]
0.0	: Strength of the acceleration time scale perturbation
0.0e+1	: Strength of the minimum proton Lorentz factor perturbation
0.0e+9	: Strength of the maximum proton Lorentz factor perturbation
0.0e+42	: Strength of the electron injection luminosity perturbation
0.0	: Strength of the proton index perturbation
0.0	: Strength of the electron index perturbation

Example of the parameter input file.

 OneHaLe is a flexible, time-dependent, lepto-hadronic one-zone code

- It includes (almost) all relevant processes incl. external photon fields
- Version 1.1 available upon reasonable request to me
- Version 2.0 in development; will be uploaded to GitHub

Gory details:

- Zacharias, M., 2021, Physics, 3, 1098
- Zacharias, M., et al., 2022, MNRAS, 512, 3948

Famous last words...

10.0	: Magnetic field of the homogeneous region [G]
1.00e15	: Blob radius [cm]
5.00	: Ratio of the acceleration to escape time scales
0.125	: Redshift to the source
50.0	: Bulk Lorentz factor for the blob
2.00e-2	: Observing angle relative to the axis of the BH jet [rad]
2.00e+0	: Minimum Lorentz factor for the proton injection spectrum
4.00e+10	: Maximum Lorentz factor for the proton injection spectrum
2.30	: Proton injection index
5.00e+41	: Injection luminosity for the proton spectrum [erg s^(-1)]
2.0e+3	: Minimum Lorentz factor for the electron injection spectrum
9.0e+4	: Maximum Lorentz factor for the electron injection spectrum
1.50	: Electron spectral index
3.50e+38	: Injection luminosity for the electron spectrum [erg s^(-1)]
50.0	: Multiplicative factor of the light travel time [eta*R/c]
1.8	: Mass of the supermassive black hole (1.0e+8 M_sol)
5.0e-4	: Eddington ratio
1.00e+18	: Initial location of the blob along jet axis [cm]
7.60e+16	: Radius of the BLR [cm]
1.0e+0	: Effective temperature of the BLR [K]
2.30e+24	: Effective luminosity of the BLR [erg/s]
4.20e+18	: Radius of the DT [cm]
5.0e+0	: Effective temperature of the DT [K]
3.0e+24	: Effective luminosity of the DT [erg/s]
Θ	: Calculate neutrino detection rate using ICECube effective areas (0=no,
0.0	: Strength of the magnetic field perturbation [G]
0.0e+43	: Strength of the proton injection luminosity perturbation [erg/s]
0.0	: Strength of the acceleration time scale perturbation
0.0e+1	: Strength of the minimum proton Lorentz factor perturbation
0.0e+9	: Strength of the maximum proton Lorentz factor perturbation
0.0e+42	: Strength of the electron injection luminosity perturbation
0.0	: Strength of the proton index perturbation
0.0	: Strength of the electron index perturbation

Example of the parameter input file.

Gory details:

- Zacharias, M., 2021, Physics, 3, 1098
- Zacharias, M., et al., 2022, MNRAS, 512, 3948

- OneHaLe is a flexible, time-dependent, lepto-hadronic one-zone code
- It includes (almost) all relevant processes incl. external photon fields
- Version 1.1 available upon reasonable request to me
- Version 2.0 in development; will be uploaded to GitHub
- Big THANKS to:

Anton Dmitriiev, Patrick Kilian, Andreas Zech, Anita Reimer, Catherine Boisson, Markus Böttcher, and the various people who have already used and tested the code

Famous last words...

<pre>1.00e15 : Blob radius [cm] 5.00 : Ratio of the acceleration to escape time scales 0.125 : Redshift to the source 50.0 : Bulk Lorentz factor for the blob 2.00e-2 : Observing angle relative to the axis of the BH jet [rad] 2.00e+0 : Minimum Lorentz factor for the proton injection spectrum 4.00e+10 : Haximum Lorentz factor for the proton injection spectrum 5.00 : Proton injection index 5.00e+41 : Injection luminosity for the proton spectrum [erg s^(-1)] 2.0e+3 : Minimum Lorentz factor for the electron injection spectrum 5.00 : Electron spectral index 5.50e+38 : Injection luminosity for the electron spectrum [erg s^(-1)] 5.00 : Multiplicative factor of the light travel time [eta*R/c] 1.8 : Mass of the supermassive black hole (1.0e+8 M_sol) 5.0e+4 : Eddington ratio 1.00e+18 : Initial location of the blob along jet axis [cm] 7.60e+16 : Radius of the BLR [cm] 1.0e+0 : Effective temperature of the BLR [K] 2.30e+24 : Effective luminosity of the DT [erg/s] 5.0e+4 : Effective luminosity of the DT [erg/s] 6 : Calculate neutrino detection rate using ICECube effective areas (0=n)</pre>
 S.00 : Ratio of the acceleration to escape time scales S.00 : Redshift to the source S0.0 : Bulk Lorentz factor for the blob 2.00e-2 : Observing angle relative to the axis of the BH jet [rad] 2.00e+0 : Minimum Lorentz factor for the proton injection spectrum 4.00e+10 : Maximum Lorentz factor for the proton injection spectrum 2.30 : Proton injection index S.00e+41 : Injection luminosity for the proton spectrum [erg s^(-1)] 2.0e+3 : Minimum Lorentz factor for the electron injection spectrum 9.0e+4 : Maximum Lorentz factor for the electron spectrum [erg s^(-1)] S.00 : Electron spectral index 3.50e+38 : Injection luminosity for the lectron spectrum [erg s^(-1)] 50.0 : Multiplicative factor of the light travel time [eta*R/c] 1.8 : Mass of the supernassive black hole (1.0e+8 M_sol) 5.0e+4 : Eddington ratio 1.00e+18 : Initial location of the BLR [K] 2.30e+24 : Effective temperature of the BLR [K] 2.30e+24 : Effective luminosity for the BLR [erg/s] 3.0e+24 : Effective luminosity for the DT [cr] S.0e+0 : Effective luminosity of the DT [cr] S.0e+0 : Effective luminosity of the DT [erg/s] 0.0e+24 : Effective luminosity for He DT [cr]
<pre>0.125 : Redshift to the source 50.0 : Bulk Lorentz factor for the blob 2.00e-2 : Observing angle relative to the axis of the BH jet [rad] 2.00e+0 : Minimum Lorentz factor for the proton injection spectrum 4.00e+10 : Maximum Lorentz factor for the proton injection spectrum 2.30 : Proton injection index 5.00e+41 : Injection luminosity for the proton spectrum [erg s^(-1)] 2.0e+3 : Minimum Lorentz factor for the electron injection spectrum 9.0e+4 : Maximum Lorentz factor for the electron injection spectrum 9.0e+4 : Maximum Lorentz factor for the electron injection spectrum 1.50 : Electron spectral index 3.50e+38 : Injection luminosity for the electron spectrum [erg s^(-1)] 50.0 : Multiplicative factor of the light travel time [eta*R/c] 1.8 : Mass of the supermassive black hole (1.0e+8 M_sol) 5.0e+4 : Eddington ratio 1.00e+18 : Initial location of the blob along jet axis [cm] 1.0e+0 : Effective temperature of the BLR [K] 2.30e+24 : Effective luminosity of the BLR [erg/s] 5.0e+0 : Effective temperature of the DT [erg/s] 3.0e+24 : Effective luminosity of the DT [erg/s] 6 : Calculate neutrino detection rate using ICECube effective areas (0=ni 9 : Calculate neutrino detection rate using ICECube effective areas (0=ni 9 : Calculate neutrino detection rate using ICECube effective areas (0=ni 9 : Calculate neutrino detection rate using ICECube effective areas (0=ni 9 : Calculate neutrino detection rate using ICECube effective areas (0=ni 9 : Calculate neutrino detection rate using ICECube effective areas (0=ni 9 : Calculate neutrino detection rate using ICECube effective areas (0=ni 9 : Calculate neutrino detection rate using ICECube effective areas (0=ni 9 : Calculate neutrino detection rate using ICECube effective areas (0=ni 9 : Calculate neutrino detection rate using ICECube effective areas (0=ni 9 : Calculate neutrino detection rate using ICECube effective areas (0=ni 9 : Calculate neutrino detection rate using ICECube effective areas (0=ni 9 : Calculate neutrino detection rate using ICECube effective areas (0=ni</pre>
 50.0 : Bulk Lorentz factor for the blob 2.00e-2 : Observing angle relative to the axis of the BH jet [rad] 2.00e+0 : Minimum Lorentz factor for the proton injection spectrum 4.00e+10 : Maximum Lorentz factor for the proton injection spectrum 2.30 : Proton injection index 5.00e+41 : Injection luminosity for the proton spectrum [erg s^(-1)] 2.0e+3 : Minimum Lorentz factor for the electron injection spectrum 3.50e+38 : Injection luminosity for the electron spectrum [erg s^(-1)] 5.00 : Hultiplicative factor of the light travel time [eta*R/c] 1.8 : Mass of the supermassive black hole (1.0e+8 M_sol) 5.0e+4 : Eddington ratio 1.00e+18 : Initial location of the blob along jet axis [cm] 7.60e+16 : Radius of the BLR [Cm] 1.0e+0 : Effective temperature of the BLR [K] 2.30e+24 : Effective temperature of the DT [erg/s] 3.0e+24 : Effective luminosity for the DT [erg/s] 0.0e+24 : Effective luminosity of the DT [erg/s]
<pre>2.00e-2 : Observing angle relative to the axis of the BH jet [rad] 2.00e+0 : Maximum Lorentz factor for the proton injection spectrum 4.00e+10 : Maximum Lorentz factor for the proton injection spectrum 2.30 : Proton injection index 5.00e+41 : Injection luminosity for the proton spectrum [erg s^(-1)] 2.0e+3 : Minimum Lorentz factor for the electron injection spectrum 9.0e+4 : Maximum Lorentz factor for the electron injection spectrum 9.0e+4 : Maximum Lorentz factor for the electron spectrum 9.0e+3 : Liectron spectral index 3.50e+38 : Injection luminosity for the electron spectrum [erg s^(-1)] 50.0 : Multiplicative factor of the light travel time [eta*R/c] 1.8 : Mass of the supermassive black hole (1.0e+8 M_sol) 5.0e+4 : Eddington ratio 1.00e+18 : Initial location of the blob along jet axis [cm] 1.0e+0 : Effective temperature of the BLR [K] 2.30e+24 : Effective luminosity for the BLR [erg/s] 4.20e+18 : Radius of the DT [cn] 5.0e+0 : Effective temperature of the DT [K] 3.0e+24 : Effective luminosity of the DT [erg/s] 6 : Calculate neutrino detection rate using ICECube effective areas (0=ne)</pre>
<pre>2.00e+0 : Minimum Lorentz factor for the proton injection spectrum 4.00e+10 : Maximum Lorentz factor for the proton injection spectrum 5.00e+41 : Injection luminosity for the proton spectrum [erg s^(-1)] 2.0e+3 : Minimum Lorentz factor for the electron injection spectrum 9.0e+4 : Maximum Lorentz factor for the electron injection spectrum 1.50 : Electron spectral Index 3.50e+38 : Injection luminosity for the electron spectrum [erg s^(-1)] 50.0 : Multiplicative factor of the light travel time [eta*R/c] 1.8 : Mass of the supermassive black hole (1.0e+8 M_sol) 5.0e+4 : Eddington ratio 1.00e+18 : Initial location of the blob along jet axis [cm] 7.60e+16 : Radius of the BLR [cm] 1.0e+0 : Effective temperature of the BLR [K] 2.30e+24 : Effective luminosity of the BLR [erg/s] 5.0e+0 : Effective temperature of the DT [erg/s] 3.0e+24 : Effective luminosity of the DT [erg/s] 6 : Calculate neutrino detection rate using ICECube effective areas (0=ni)</pre>
<pre>4.00e+10 : Maximum Lorentz factor for the proton injection spectrum 2.30 : Proton injection index 5.00e+41 : Injection luminosity for the proton spectrum [erg s^(-1)] 2.0e+3 : Minimum Lorentz factor for the electron injection spectrum 9.0e+4 : Maximum Lorentz factor for the electron injection spectrum 1.50 : Electron spectral index 3.50e+38 : Injection luminosity for the electron spectrum [erg s^(-1)] 50.0 : Multiplicative factor of the light travel time [eta*R/c] 1.8 : Mass of the supermassive black hole (1.0e+8 M_sol) 5.0e+4 : Eddington ratio 1.00e+18 : Initial location of the blob along jet axis [cm] 7.60e+16 : Radius of the BLR [m] 1.0e+0 : Effective temperature of the BLR [K] 2.30e+24 : Effective luminosity of the DT [erg/s] 5.0e+0 : Effective luminosity of the DT [k] 3.0e+24 : Effective luminosity of the DT [erg/s] 0 : Calculate neutrino detection rate using ICECube effective areas (0=ne) </pre>
2.30 : Proton injection index 5.00e+41 : Injection luminosity for the proton spectrum [erg s^(-1)] 2.0e+3 : Minimum Lorentz factor for the electron injection spectrum 9.0e+4 : Maximum Lorentz factor for the electron injection spectrum 1.50 : Electron spectral index 3.50e+38 : Injection luminosity for the electron spectrum [erg s^(-1)] 50.0 : Multiplicative factor of the light travel time [eta*R/c] 1.8 : Mass of the supermassive black hole (1.0e+8 M_sol) 5.0e+4 : Eddington ratio 1.00e+18 : Initial location of the blob along jet axis [cm] 7.60e+16 : Radius of the BLR [cm] 1.0e+0 : Effective temperature of the BLR [K] 2.30e+24 : Effective luminosity of the BLR [erg/s] 5.0e+0 : Effective temperature of the DT [erg/s] 3.0e+24 : Effective temperature of the DT [erg/s] 6 : Calculate neutrino detection rate using ICECube effective areas (0=nic)
5.00e+41 : Injection luminosity for the proton spectrum [erg s^(-1)] 2.0e+3 : Minimum Lorentz factor for the electron injection spectrum 9.0e+4 : Minimum Lorentz factor for the electron injection spectrum 1.50 : Electron spectral index 3.50e+38 : Injection luminosity for the electron spectrum [erg s^(-1)] 50.0 : Multiplicative factor of the light travel time [eta*R/c] 1.8 : Mass of the supermassive black hole (1.0e+8 M_sol) 5.0e+4 : Eddington ratio 1.00e+18 : Initial location of the blob along jet axis [cm] 7.60e+16 : Radius of the BLR [cm] 1.0e+0 : Effective temperature of the BLR [K] 2.30e+24 : Effective tom tor (cm] 5.0e+4 : Eddius of the DT [cm] 5.0e+0 : Effective luminosity of the DT [erg/s] 3.0e+24 : Effective luminosity of the DT [erg/s] 6 : Calculate neutrino detection rate using ICECube effective areas (0=ni)
 2.0e+3 : Minimum Lorentz factor for the electron injection spectrum 9.0e+4 : Maximum Lorentz factor for the electron injection spectrum 1.50 : Electron spectral index 3.50e+38 : Injection luminosity for the electron spectrum [erg s^(-1)] 50.0 : Multiplicative factor of the light travel time [eta*R/c] 1.8 : Mass of the supermassive black hole (1.0e+8 M_sol) 5.0e-4 : Eddington ratio 1.00e+18 : Initial location of the blob along jet axis [cm] 7.60e+16 : Radius of the BLR [m] 1.0e+0 : Effective temperature of the BLR [K] 2.30e+24 : Effective luminosity of the BLR [erg/s] 4.20e+18 : Radius of the DT [cn] 5.0e+0 : Effective temperature of the DT [K] 3.0e+24 : Effective luminosity of the DT [erg/s] 0 : Calculate neutrino detection rate using ICECube effective areas (0=ne)
9.0er4 : Maximum Lorentz factor for the electron injection spectrum 1.50 : Electron spectral index 3.50er38 : Injection luminosity for the electron spectrum [erg s^(-1)] 50.0 : Multiplicative factor of the light travel time [eta*R/c] 1.8 : Mass of the supermassive black hole (1.0er8 M_sol) 5.0er4 : Eddington ratio 1.00er18 : Initial location of the blob along jet axis [cm] 7.60er16 : Radius of the BLR [cm] 1.0er0 : Effective temperature of the BLR [K] 2.30er24 : Effective luminosity of the BLR [erg/s] 3.0er43 : Effective temperature of the DT [cm] 3.0er44 : Effective temperature of the DT [erg/s] 3.0er44 : Effective luminosity of the DT [erg/s] 3.0er54 : Effective luminosity effective luminosity effective luminosity effective luminosity effective luminosity effective lumin
<pre>1.50 : Electron spectral index 3.50e+38 : Injection luminosity for the electron spectrum [erg s^(-1)] 50.0 : Multiplicative factor of the light travel time [eta*R/c] 1.8 : Mass of the supermassive black hole (1.0e+8 M_sol) 5.0e-4 : Eddington ratio 1.00e+16 : Initial location of the blob along jet axis [cm] 7.60e+16 : Radius of the BLR [cm] 1.0e+0 : Effective temperature of the BLR [K] 2.30e+24 : Effective temperature of the BLR [K] 2.30e+24 : Effective temperature of the DT [erg/s] 5.0e+0 : Effective temperature of the DT [erg/s] 3.0e+24 : Effective luminosity of the DT [erg/s] 0 : Calculate neutrino detection rate using ICECube effective areas (0=not 0 : Calculate neutrino detection rate using ICECube effective areas (0=not 0 : Calculate neutrino detection rate using ICECube effective areas (0=not 0 : Calculate neutrino detection rate using ICECube effective areas (0=not 0 : Calculate neutrino detection rate using ICECube effective areas (0=not 0 : Calculate neutrino detection rate using ICECube effective areas (0=not 0 : Calculate neutrino detection rate using ICECube effective areas (0=not 0 : Calculate neutrino detection rate using ICECube effective areas (0=not 0 : Calculate neutrino detection rate using ICECube effective areas (0=not 0 : Calculate neutrino detection rate using ICECube effective areas (0=not 0 : Calculate neutrino detection rate using ICECube effective areas (0=not 0 : Calculate neutrino detection rate using ICECube effective areas (0=not 0 : Calculate neutrino detection rate using ICECube effective areas (0=not 0 : Calculate neutrino detection rate using ICECube effective areas (0=not 0 : Calculate neutrino detection rate using ICECube effective areas (0=not 0 : Calculate neutrino detection rate using ICECube effective areas (0=not 0 : Calculate neutrino detection rate using ICECube effective areas (0=not 0 : Calculate neutrino detection rate using ICECube effective areas (0=not 0 : Calculate neutrino detection rate using ICECube effective areas (0=not 0 : Calculate neutrino detectio</pre>
3.50e+38 : Injection luminosity for the electron spectrum [erg s^(-1)] 50.0 : Multiplicative factor of the light travel time [eta*R/c] 1.8 : Mass of the supernassive black hole (1.0e+8 M_sol) 5.0e-4 : Eddington ratio 1.00e+18 : Initial location of the blob along jet axis [cm] 7.60e+16 : Radius of the BLR [cm] 1.0e+0 : Effective temperature of the BLR [K] 2.30e+24 : Effective luminosity of the BLR [erg/s] 4.20e+18 : Radius of the DT [cn] 5.0e+0 : Effective temperature of the DT [K] 3.0e+24 : Effective luminosity of the DT [erg/s] 6 : Calculate neutrino detection rate using ICECube effective areas (0=nu)
50.0 : Multiplicative factor of the light travel time [eta*R/c] 1.8 : Mass of the supermassive black hole (1.0e+8 M_sol) 5.0e-4 : Eddington ratio 1.00e+18 : Initial location of the blob along jet axis [cm] 7.60e+16 : Radius of the BLR [cm] 1.0e+0 : Effective temperature of the BLR [K] 2.30e+24 : Effective luminosity of the BLR [erg/s] 3.0e+24 : Effective temperature of the DT [cm] 5.0e+0 : Effective temperature of the DT [cm] 3.0e+24 : Effective luminosity of the DT [cm]/s] 3.0e+24 : Effective luminosity of the DT [cm]/s] 3.0e+24 : Effective luminosity of the DT [cm]/s] 3.0e+24 : Effective luminosity of the DT [cmg/s] 0 : Calculate neutrino detection rate using ICECube effective areas (0=nic)
1.8 : Mass of the supermassive black hole (1.0e+8 M_sol) 5.0e-4 : Eddington ratio 1.00e+18 : Initial location of the blob along jet axis [cm] 7.60e+16 : Radius of the BLR [cm] 1.0e+0 : Effective temperature of the BLR [K] 2.30e+24 : Effective luminosity of the BLR [erg/s] 4.20e+18 : Radius of the DT [cm] 5.0e+0 : Effective luminosity of the DT [erg/s] 3.0e+24 : Effective luminosity of the DT [erg/s] 0 : Calculate neutrino detection rate using ICECube effective areas (0=nei
 5.0e-4 : Eddington ratio 1.00e+18 : Initial location of the blob along jet axis [cm] 7.60e+16 : Radius of the BLR [cm] 1.0e+0 : Effective temperature of the BLR [K] 2.30e+24 : Effective luminosity of the BLR [erg/s] 4.20e+18 : Radius of the DT [cn] 5.0e+0 : Effective temperature of the DT [K] 3.0e+24 : Effective luminosity of the DT [erg/s] 6.0e+10 : Calculate neutrino detection rate using ICECube effective areas (0=ne)
1.00e+18 : Initial location of the blob along jet axis [cm] 7.60e+16 : Radius of the BLR [cm] 1.0e+0 : Effective temperature of the BLR [K] 2.30e+24 : Effective luminosity of the BLR [erg/s] 4.20e+18 : Radius of the DT [cm] 5.0e+0 : Effective temperature of the DT [K] 3.0e+24 : Effective luminosity of the DT [erg/s] 3.0e+24 : Effective temperature of the DT [erg/s] 3.0e+24 : Effective luminosity of the DT [erg/s] 0 : Calculate neutrino detection rate using ICECube effective areas (0=nic)
7.60e+16 : Radius of the BLR [cm] 1.0e+0 : Effective temperature of the BLR [K] 2.30e+24 : Effective luminosity of the BLR [erg/s] 4.20e+18 : Radius of the DT [cm] 5.0e+0 : Effective temperature of the DT [K] 3.0e+24 : Effective luminosity of the DT [erg/s] 0 : Calculate neutrino detection rate using ICECube effective areas (0=no
1.0e+0 : Effective temperature of the BLR [K] 2.30e+24 : Effective luminosity of the BLR [erg/s] 4.20e+18 : Radius of the DT [cn] 5.0e+0 : Effective temperature of the DT [K] 3.0e+24 : Effective luminosity of the DT [erg/s] 0 : Calculate neutrino detection rate using ICECube effective areas (0=nu
2.30e+24 : Effective luminosity of the BLR [erg/s] 4.20e+18 : Radius of the DT [cm] 5.0e+0 : Effective temperature of the DT [K] 3.0e+24 : Effective luminosity of the DT [erg/s] 0 : Calculate neutrino detection rate using ICECube effective areas (0=nd
4.20e+18 : Radius of the DT [cm] 5.0e+0 : Effective temperature of the DT [K] 3.0e+24 : Effective luminosity of the DT [erg/s] θ : Calculate neutrino detection rate using ICECube effective areas (θ=nu
 S.0e+0 : Effective temperature of the DT [K] 3.0e+24 : Effective luminosity of the DT [erg/s] G : Calculate neutrino detection rate using ICECube effective areas (0=n)
3.0e+24 : Effective luminosity of the DT [erg/s] 0 : Calculate neutrino detection rate using ICECube effective areas (0=nd
0 : Calculate neutrino detection rate using ICECube effective areas (0=nl
0.0 : Strength of the magnetic field perturbation [G]
0.0e+43 : Strength of the proton injection luminosity perturbation [erg/s]
0.0 : Strength of the acceleration time scale perturbation
0.0e+1 : Strength of the minimum proton Lorentz factor perturbation
0.0e+9 : Strength of the maximum proton Lorentz factor perturbation
0.0e+42 : Strength of the electron injection luminosity perturbation
0.0 : Strength of the proton index perturbation
0.0 : Strength of the electron index perturbation

Example of the parameter input file.

Gory details:

- Zacharias, M., 2021, Physics, 3, 1098
- Zacharias, M., et al., 2022, MNRAS, 512, 3948

- OneHaLe is a flexible, time-dependent, lepto-hadronic one-zone code
- It includes (almost) all relevant processes incl. external photon fields
- Version 1.1 available upon reasonable request to me
- Version 2.0 in development; will be uploaded to GitHub
- Big THANKS to:

1=yes

Anton Dmitriiev, Patrick Kilian, Andreas Zech, Anita Reimer, Catherine Boisson, Markus Böttcher, and the various people who have already used and tested the code

Thank you for your attention!