LeHaMoC : A Versatile and Efficient Time-Dependent Lepto-Hadronic Code for Astrophysical Sources

National and Kapodistrian University of Athens

Workshop on Numerical Multi-messenger Modeling

High energy astrophysical sources

- Accretion into SMBH
- Thermal+non-thermal radiation
- High-energy neutrino
 association

- Shock acceleration in

 relativistic outflows
- Thermal+non-thermal radiation
- Acceleration of pairs in the magnetosphere

termination shocks

 Thermal+non-thermal • radiation

- Tidal disruption of a star
- Acceleration of particles through shocks
- Thermal+non-thermal radiation
- High-energy neutrino association

Motivation and aims

P.Padovani et.al. 2021

- Association between AGN, high energy astrophysical sources and HE neutrinos
- Rapid increase in the amount of multi-wavelength data of these sources

Underscores the need for efficient computational tools to analyze and interpret this information

Physical processes in multi-messenger source modelling

The kinetic equation

The Boltzmann equation:

$$\frac{\partial f}{\partial t} + \frac{\mathbf{p}}{m} \cdot \nabla f + \mathbf{F} \cdot \frac{\partial f}{\partial \mathbf{p}} = \left(\frac{\partial f}{\partial t}\right)_{\text{coll}}$$
• Collisionless
• No transport
• Interactions with particles
escape and injection
$$\frac{\partial N_i(E,t)}{\partial t} + \frac{\partial}{\partial E} \left(b(E)N_i(E,t)\right) + \frac{N_i(E,t)}{t_{esc}(E,t)} = Q_{inj}(E,t) + Q_{ext}(E,t)$$

The kinetic equation and challenges

- Particles occupy a region (spherical)
- Description of the numerical density of particles in time and energy through partial differential equations

Dimitrakoudis et.al 2012

The kinetic equation and LeHaMoC $V1_{i,z}N_{i,z-1}^{j+1} + V2_{i,z}N_{i,z}^{j+1} + V3_{i,z}N_{i,z+1}^{j+1} = S_{i,z}^{j}$ Coefficients $V1_{i,z} = 0$ $V2_{i,z} = 1 + \frac{\Delta t}{t_{i,esc}} + \frac{\Delta t}{\Delta \gamma_z} \sum_{p} \left(\frac{d\gamma_i}{dt}\right)_{p,z}^{j+1}$ $V3_{i,z} = -\frac{\Delta t}{\Delta \gamma_z} \sum_{p} \left(\frac{d\gamma_i}{dt}\right)_{p,z+1}^{j+1}$ Tridiagonal matrix (Thomas, L. H. 1949) **Evolution of** particles

Source term

$$S_{i,z}^j = N_{i,z}^j + Q_{i,z}^j \Delta t$$

Time consuming processes: Bethe-Heitler

Energy distribution of pairs (direct computation of 3 integrals):

Time consuming processes: Bethe-Heitler

D. Karavola & M. Petropoulou JCAP submitted, arXiv:2401.05534

https://github.com/Des0053/Bethe-Heitler-Injection-Rate-Analytical-Approximation

~2 times faster than using the interpolation to calculate the last integral

Time consuming processes: Photo meson production

Energy distribution of secondaries:

$$\frac{dN_l}{dtdVdE_l} = \int n_p(E_p)n_{ph}(\epsilon)\Phi_l(\eta, x)\frac{dE_p}{E_p}d\epsilon,$$

Kelner & Aharonian 2008

 $\Phi_l(\eta,x)$: Energy distribution of the 8 species I

<u>Time consumption</u>: Each species emissivity is calculated in the same process separately (3 seconds each)

<u>Solution</u>: Parallel computing (implemented in the future)

LeHaMoC compared against other codes

LeHaMoC results-Validation and Comparison

LeHaMoC results-Illustrative Example 1: Blazar SED Fitting

LeHaMoC + emcee \rightarrow Better understanding of the physics inside the emitting region

3HSP J095507.9+355101

Small execution time: Able to scan the parameter space in a short timeframe

LeHaMoC results-Illustrative Example 2: NGC 1068 SED Fitting

Source characteristics $M_{SMBH} \sim 10^{7.3} M_{SUN}$ $R_s \sim 6 \ 10^{12}$ [cm] Intrinsic X-ray luminosity $\sim 10^{44}$ [erg s⁻¹] Opaque in 0.1-10GeV ($\tau_{\gamma\gamma} > 1$) $\rightarrow R < 100 R_s$ <u>Conclusions</u>

Neutrinos are produced in the vicinity of the SMBH \rightarrow Corona-disk region

On going projects with LeHaMoC

Cosmic-ray acceleration in M87 current sheets

in collaboration with M.Petropoulou, D.Giannios and L.Sironi

Non thermal pairs:

- > Trapped pairs (pairs within plasmoids accelerated in the X-points $1 < \gamma < \sigma$)
- > Free pairs (pairs accelerated in the upstream region $\sigma < \gamma < \gamma_{rad}$)
- Secondary pairs (injected from γγ absorption)

Pairs can be accelerated up to: $\gamma_{rad} \simeq \sqrt{3} \cdot 10^6 \; . \label{eq:gamma_rad}$

Cosmic-ray acceleration in M87 current sheets

in collaboration with M.Petropoulou, D.Giannios and L.Sironi

LeHaMoC: Application to Neural Networks

ML: speed up the modelling of synchro-Compton blazar emission Application of NN -> replace computational tools

INCOMING

A. Tzavellas 22/02 15:30

Summary

- LeHaMoC: Versatile and efficient numerical tool for calculating spectra for high energy astrophysical sources
- The code's versatility and speed make it well suited for modelling GRBs, Blazars and other high-energy sources
- Download the code in the following link

M. Chatzis 22/02 10:00 A Study of Broadband Variability in the Context of Hybrid Leptohadronic Models for TeV Blazars

https://github.com/mariapetro/LeHaMoC

Thank you!

Backup slides

The expression:

$$\frac{dN}{d\gamma_e} = \int_{\frac{(\gamma_p + \gamma_e)^2}{4\gamma_p^2 \gamma_e}}^{\frac{m_p}{\gamma_p m_e}} d\epsilon \frac{n_{\gamma}(\epsilon)}{\epsilon^2} \int_{\frac{(\gamma_p + \gamma_e)^2}{2\gamma_p \gamma_e}}^{2\gamma_p \epsilon} d\omega \, \omega \int_{\frac{(\gamma_p^2 + \gamma_e^2)}{2\gamma_p \gamma_e}}^{\omega - 1} dE_{-} \frac{W(\omega, E_{-}, \xi)}{p_{-}}$$

is valid when: $m_e c^2 \ll \gamma_p \epsilon \ll m_p c^2$

Comparison between the empirical function (δ function +GB) $\log_{10}\left(\frac{\gamma_e}{\gamma_{e,\text{pk}}}\right)$ $a_2^2 \left(\frac{\gamma_{e,\text{pk}}}{2}\right)$ Empirical function: $q_{BH}(\gamma_e) = A(\gamma_p, \epsilon) \cdot \exp(-\frac{1}{2})$ $a_3 \frac{\gamma_e}{\gamma_{e,\mathrm{cr}}}$ $2a_1^2$ 10- 10^{-1} ATHEVA ATHEVA $\begin{bmatrix} 1 & 10^{-2} \\ s & \varepsilon \end{bmatrix}^{H_{B}} \begin{bmatrix} 10^{-3} \\ H_{B} \\ O_{z}^{ab} \end{bmatrix} \begin{bmatrix} 10^{-4} \\ 0 \\ z \end{bmatrix}^{ab}$ $\begin{bmatrix} 10^{-2} & 10^{-2} \\ s & 0 \end{bmatrix}^{-3} = \begin{bmatrix} 10^{-3} & 0 \\ 0 & 0 \end{bmatrix}^{-4}$ $= \begin{bmatrix} 10^{-4} & 0 \\ 0 & 0 \end{bmatrix}^{-4}$ LeHaMoC mod LeHaMoC mod 10^{-2} LeHaMoC LeHaMoC $\gamma_p = 10^{5-5.2}$ $\gamma_p=10^{4-4.2}$ 13 JU 10 10 aMoC aMo 10 10 $\chi = Y_{ATHEVA}/Y_{L}$ X=Y_{ATHEVA}/Y_L 10⁰ 10 10 10^{-1} 104 1010 104 106 10⁸ 1010 10⁶ 10⁸ 10² 10² 10-10-ATHEVA ATHEVA $Y \equiv \gamma_e^2 Q_{BH} [cm^{-3} s^{-1}]$ $Y \equiv \gamma_e^2 Q_{BH} [cm^{-3} s^{-1}]$ 10^{-2} LeHaMoC mod 10-2 LeHaMoC mod $\gamma_p = 10^{6-6.2}$ $\gamma_p=10^{7-7.2}$ LeHaMoC LeHaMoC 10-3 10-3 10 10 10 10 X=Y_{ATHEVA}/Y_{LEHAMOC} 10-6 X=YATHEVA/YLEHAMOC 10¹ 10¹ 10⁰ 100 10⁻¹ 10⁻¹ 104 106 1010 108 10⁸ 104 10⁶ 1010

γe

23

γe

Parameters	Test 1	Test 2	Test 3	Test 4
R_0 [cm]	10 ¹⁵	1015	1013	10 ¹⁶
B_0 [G]	1	10	10	0.1
V_{exp}/c	0	0	0.1	0
$\gamma_{e,\min}$	1	-	10^{3}	$10^{0.1}$
$\gamma_{e, \text{coff}}^*$	-	-	-	$10^{5.5}$
$\gamma_{e,\max}$	10^{6}	10^{4}	10^{4}	1011
$\gamma_{p,\min}$	-	1	-	$10^{0.1}$
$\gamma_{p,\text{coff}}^*$	-	10^{8}	-	$10^{6.2}$
$\gamma_{p,\max}$		109	-	107
Se	1.9	_	2.01	2.01
Sp	-	1.9	-	2.01
L_e^{inj} [erg s ⁻¹]	$3.1\cdot10^{40}$	-	10^{48}	$3.7 \cdot 10^{40}$
L_p^{inj} [erg s ⁻¹]	-	$1.1 \cdot 10^{45}$	-	$2.8 \cdot 10^{44}$
U_{ext} [erg s ⁻¹]	-	$3.6 \cdot 10^{-2}$	-	-
ϵ_{ext}^{\min} [erg]	-	$8.2 \cdot 10^{-13}$	-	-
ϵ_{ext}^{\max} [erg]	-	$8.2\cdot 10^{-8}$	-	-
Photon Index	-	2	-	-

Introduction to the "emcee" Sampler: Exploring Posterior Distributions with MCMC

- The "emcee" sampler is a Python package for MCMC sampling.
- It uses ensemble sampling with multiple walkers to explore the parameter space.
- Walkers propose new parameter sets based on current positions, accepting or rejecting based on data likelihood.
- Through iterations, walkers converge towards regions of higher posterior probability.
- Samples generated by "emcee" provide estimates of statistical properties (mean, median, etc.) for inference and uncertainty quantification.

Cosmic-ray acceleration in M87 current sheets (work in progress)

Reconnection rate from 3D PIC:
$$\eta_{rec} = \frac{v_{rec}}{c} \sim 0.06$$

Typical size of current sheets: $l \sim (5-10) \cdot r_g$
Acceleration timescale from 3D PIC:
 $\frac{d\gamma_{acc}}{dt} \approx \frac{e_{rec}v_z}{mc^2} = \frac{e\eta_{rec}B_0\beta_z}{mc} = \eta_{rec}\beta_z\omega_0$

In the MAD regime the dimensionless magnetic flux, threading the black hole horizon takes the maximum value 50:

 σ_e