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Introduction & Motivation

§ Need	to	be	better	understand	phenomena	in	galaxy	formation	&	evolution:

• mechanism	of	inflow/outflow

• position	of	galaxies	in	the	cosmic	web	and	their	evolution

• the	importance	of	mergers

• star	formation	and	mass	maps	in	high	resolution

• star	formation	rate

§ Multi-wavelength	images	over	a	wide	field	of	view	only	available	from	ground-based telescopes

• Degraded due	to	atmospheric	blurring	and	instrumental	optics

§ Access	to	clear	high-resolution images

• Increasing	need	to	develop	fast and	accurate deconvolution	algorithms	that	generalize	well



The Deconvolution Problem

Model

§ Observed	Noisy	Image

§ Ground	Truth	Image

§ PSF

§ Additive Noise

𝐲 ∈ ℝ!×!

 𝐱# ∈ ℝ!×!

𝐡 ∈ ℝ!×!

𝜂 ∈ ℝ!×!

𝐲 = 𝐡 ∗ 𝐱! + 𝜂

§ The	equation	is	ill-conditioned	and	ill-posed

§ Problem	could	be	handled	by	regularization

= ∗ +

Issues

Observed	Noisy	Image PSF Ground	Truth Additive	Noise



The Deconvolution Step

!𝐱 = 𝐇!𝐇+ λ 𝚪!𝚪 "# 𝐇!𝐲

§ Noise	standard	deviation

§ Linear	Tikhonov	filter	set	to	a	Laplacian	high-pass	

filter	(to	penalize	high	frequencies)

§ Regularization	weight

σ	 ∈ ℝ

𝚪 ∈ ℝ!!×!!

λ ∈ ℝ$

Tikhonov 
Deconvolution

𝐿 𝐱 =
1
2σ$ 𝐇𝐱 − 𝐲 $

$ + λ 𝚪𝐱 $
$Loss Function

Tikhonov	output	
contains	correlated	

noise
𝐇 ∈ ℝ!!×!! § Block	circulant	matrix	associated	with	the	

convolution	operator	h	

!𝐱𝐲



The Denoising Step

§ Denoiser	

The	training	is	aimed	to	make	the	network	learn	the	following	mapping	while	minimizing	a	suitable	loss	function:

§ Tikhonov	output		%𝐱	 ground	truth	image	 𝐱!

!𝐱	 𝐱)



U-net

§ Originally	developed	for	biomedical	image	segmentation

§ Relevant	to	many	other	imaging	problems,	like	denoising

§ U-nets	consist	of	a	multi-scale	approach,	allowing	the	signal	to	be	
analyzed at	multiple	resolutions

U-Net: Convolutional Networks for Biomedical Image Segmentation
Ronneberger et al, 2015

SUNet

§ A	Unet with	Swin Transformer blocks	

incorporated	in	the	architecture

SUNet: Swin Transformer UNet for Image Denoising, 
Fan et al, 2022



Swin Transformer: Hierarchical 
Vision Transformer using 
Shifted Windows, Liu et al, 
2021

Swin Transformer



Learnlet

§ The	Learnlet	decomposition	(Ramzi	et	al.,	2021)	

aims	at	learning	a	filter	bank	in	a	denoising	setting	

with	backpropagation	and	gradient	descent

§ Learnlets	exploit	the	best	of	both	of	deep	learning	

and	classical	algorithms	–

• uses	gradient	descent	to	improve	the	expressive	power	
of	wavelets

• preserves	some	interesting	wavelet	properties	like	exact	
reconstruction

§ m	=	5	scales								→ 44,840	trainable	parameters

128	× 128

𝐟* &𝐱, σ = 𝐒*% 𝐓*& 𝐀*' &𝐱 , σ ∶ ℝ+×+×Σ 	 →	 ℝ+×+

Σ

𝑚
θ = θ", θ!, θ# ∈ Θ$

§ set	of	possible	values	for	the	noise	

standard	deviation	σ

§ Number	of	scales

§ a	given	set	of	parameters

Wavelets in the Deep Learning Era
Ramzi et al, 2022



Dataset Generation & Training

Ground Truth 
Images

§ CANDELS	– Five	different	image	mosaics	(GOODS-N,	GOODS-S,	EGS,	UDS,	COSMOS)

§ HST	cutouts of	128	× 128	pixels	from	CANDELS	in	the	F606W filter	(V-band)	centred	at	the	object	centroid



Filtering
§ Selected	good	galaxy	candidates	and	excluded	point-sized	objects	using	the	following	

filtering	criteria:

• MAG_AUTO	<	26	 (AB	magnitude	in	SExtractor “AUTO” aperture)	

• Flux_Radius80 >	10	 (80%	enclosed	flux	radius	in	pixels)

• FWHM	>	10	 (full	width	at	half	maximum	in	pixels)	

Good	Candidates Rejected



§ Convolved	~25,000	ground-truth	images	with	a	Gaussian	PSF	having	an	FWHM	of	15	pixels		

§ Added	white	Gaussian	noise	with	a	standard	deviation	σnoise having	a	value	such	that	the	faintest	object	in	

our	dataset	has	a	peak	SNR	close	to	1

§ Train-Validation-Test	split				– 0.8 ∶ 0.1 ∶ 0.1

Noisy 
Simulations

§ Normalized	each	image	𝐱 ( by	subtracting	its	mean	𝜇 ( and	scaling	within	the	[−1, 1] range	as	follows:	

𝐱 ) 67 )

89: 𝐱 )
& 67 )

&

§ Random	rotations	in	multiples	of	90°,	translations	and	flips	along	horizontal	&	vertical	axes

Normalization

Data 
Augmentation

• 𝐱 "
# 		-			ith	target	image			

• 𝜇 "
# -			mean	of	ith	target	image	



Performance Comparison

Method No.	of	
parameters Batch	Size Epochs Training	Time	

(hrs.)
Runtime	per	
image	(ms)

Learnlet 44,840	 32 150 5.45 30.8

Unet-64 31,023,940	 32 500 14.4 26.3

SUNet 38,365,111 16 250 90 15.2

All computations 
on Titan RTX 
Turing GPU with 
24 GB RAM



Results

Residual = 𝐲 − 𝐡 ∗ 𝑁$ D𝐱

• 𝐲	– noisy	image
• 𝐡 – PSF
• :𝐱	– noisy	tikhonov input
• 𝑁! – network	model

Deep learning-based galaxy image deconvolution 
Akhaury et al, 2022



Multi-resolution
Analysis

Original	Image

Scale	1 Scale	2 Scale	3 Scale	4 Scale	5

3rd Scale	selected	

to	detect	clumps

§ Wavelet	decomposition	

using	SCARLET



Hallucination Rate



Debiasing with Multi-resolution Support (MRS)



NMSE SSIM Flux Error

Metrics

SSIM	=	1:		Identical
SSIM	=	0:		Dissimilar

Low	
SNR

High	
SNR

Extracted	Flux	in	
small-scale	
structures



Test on VLT Images

§ All	84	cluster	members	at	redshifts:		z	≈	0.58,	z	≈	0.7,	and	z	≈	0.79

§ Noisy	images:		VLT	FORS2	cutouts of	32	× 32	pixels	in	V (555nm),	R (655nm),	and	I (768nm)	bands	with	resolution	=	0.2″

§ Ground	truth:		HST	ACS	cutouts of	128	× 128	pixels	in	the	F814W filter	(I-band)	with	resolution	=	0.05″



Outputs

§ Able	to	resolve	small-scale	structures	and	recover	morphology

§ Achieves	a	resolution	close	to	HST

§ Generalizes	well	to	images	with	completely	different	noise	properties	than	the	training	dataset



Reproducible Research

§ The	ready-to-use	version	of	our	SUNet	deconvolution	method	

https://github.com/utsav-akhaury/SUNet/tree/main/Deconvolution

§ The	repository	fork	of	the	SUNet	code	used	for	training	the	network
	https://github.com/utsav-akhaury/SUNet

§ Link	to	the	trained	SUNet	weights

https://doi.org/10.5281/zenodo.10287213

§ The	Learnlet	and	Unet-64	codes
https://github.com/utsav-akhaury/understanding-unets/tree/candels

https://github.com/utsav-akhaury/SUNet/tree/main/Deconvolution
https://github.com/utsav-akhaury/SUNet
https://doi.org/10.5281/zenodo.10287213
https://github.com/utsav-akhaury/understanding-unets/tree/candels


Multi-channel
Deconvolution



Motivation

𝐱EFG = αH𝐱H +αI𝐱I +αJ𝐱J

𝛼H , 	𝛼I , 	𝛼J∈ ℝ+
Spectral	Energy	Distributions	(SED)

Euclid Filters LSST Filters



The Multi-channel Deconvolution Problem

Model

§ Observed	Noisy	Images

§ PSFs

§ Ground	Truth	Images

§ Additive Noise

§ Spectral	Energy	Distributions	(SED)

𝐲% , 	𝐲& , 	𝐲'∈ ℝ(×(

𝐡% , 	𝐡& , 	𝐡'∈ ℝ(×(

𝐱%# , 	𝐱&# , 	𝐱'# ∈ ℝ(×(

𝜂% , 	𝜂& , 	𝜂'∈ ℝ(×(

𝛼% , 	𝛼& , 	𝛼'∈ ℝ(

𝐲H = 𝐡H ∗ 𝐱H) + 𝜂H

𝐲I = 𝐡I ∗ 𝐱I) + 𝜂I

𝐲J = 𝐡J ∗ 𝐱J) + 𝜂J

LSST
0.2”

HST	
0.05”

𝐱EFG) = 𝛼H𝐱H) +𝛼I𝐱I) +𝛼J𝐱J)

𝐲EFG = 𝐡EFG ∗ 𝐱EFG) + 𝜂EFG
Euclid
0.1”



where

The Loss Functions

𝐿H 𝐱H =
1
2
	𝐡H∗ 𝐱H − 𝐲H 	

σH b

c

+ λGd+e)f
𝐡EFG ∗ ∑g αg𝐱g − 𝐲EFG

𝜎EFG b

c

𝐿I 𝐱I =
1
2
	𝐡I∗ 𝐱I − 𝐲I 	

σI b

c

+ λGd+e)f
𝐡EFG ∗ ∑g αg𝐱g − 𝐲EFG

𝜎EFG b

c

𝐿h 𝐱h =
1
2
	𝐡J∗ 𝐱J − 𝐲J 	

σJ b

c

+ λGd+e)f
𝐡EFG ∗ ∑g αg𝐱g − 𝐲EFG

𝜎EFG b

c

𝐶 ∈ {𝑅, 𝐼, 𝑍} 𝛼H , 	𝛼I , 	𝛼J∈ ℝ+§ Spectral	Energy	Distributions	(SED)	

§ Noisemaps 𝜎H , 	𝜎I , 	𝜎J∈ ℝ+×+λGd+e)f ∈ ℝi



Optimization g𝐱{H,I,J} = argmin
𝐱{H,J,K}

𝐿{H,I,J} 𝐱{H,I,J}

𝐱{H,I,J}
lim ⟵𝐱{H,I,J}

l −𝛽{H,I,J}∇𝐿{H,I,J} 𝐱{H,I,J}
lLoss Functions iteratively minimized 

using Gradient Descent

𝛽H, 	𝛽I , 	𝛽J∈ ℝ+Step Sizes

∇𝐿M 𝐱M =
𝐡MN ∗ 𝐡M ∗ 𝐱M − 𝐲M

σM O
P + 2λQR!S#T𝛼M𝐡UVQN ∗

𝐡UVQ ∗ ∑W αW𝐱W − 𝐲UVQ
σUVQ O

P

∇𝐿X 𝐱X =
𝐡XN ∗ 𝐡X ∗ 𝐱X − 𝐲X

σX O
P + 2λQR!S#T𝛼X𝐡UVQN ∗

𝐡UVQ ∗ ∑W αW𝐱W − 𝐲UVQ
σUVQ O

P

∇𝐿Y 𝐱Y =
𝐡YN ∗ 𝐡Y ∗ 𝐱Y − 𝐲Y

σY O
P + 2λQR!S#T𝛼Y𝐡UVQN ∗

𝐡UVQ ∗ ∑W αW𝐱W − 𝐲UVQ
σUVQ O

P

Gradients of the 
Loss Functions



Convergence Guarantee & Optimal step size

Credits: Jeremy Jordan



Convergence Guarantee & Optimal step size

The Optimal Condition 
for Convergence

∇𝑓 𝐱n −∇𝑓 𝐱 ≤ 𝐶 𝐱n −𝐱

∇𝐿{H,I,J} 𝐱{H,I,J}n −∇𝐿{H,I,J} 𝐱{H,I,J} ≤ 𝐶{H,I,J} 𝐱{H,I,J}n −𝐱{H,I,J}

𝐶{H,I,J} ≥
𝐡 H,I,J
o ∗ 𝐡 H,I,J

σ H,I,J b
c +

2λGd+e)f𝛼{H,I,J}c 𝐡EFGo ∗ 𝐡EFG
σEFG b

c

𝛽{H,I,J} ≤
1

𝐶{H,I,J}

A	function’s	gradient	is	Lipschitz	

continuous	if	

Substituting	the	individual	

loss	functions,	we	get

where	C is	the	Lipschitz	constant

In	our	case



Flux Leakage
Test

§ Assume	3	separately	
placed	Gaussians	in	each	
channel	(corresponding	to	
LSST	channels)

§ The	joint	image	(Euclid)	is	
a	linear	sum	of	these	
channels

§ No	Flux	Leakage	from	one	
channel	to	another



A Deconvolved Object



Thank You.


