Conformal Prediction for detecting hallucinations

Klea Panayidou Cosmology and Statistics TITAN ARGOS TOSCA workshop Paris 2024

critically (know) **when** the model succeeds/fails and **why**

critically (know) **when** the model succeeds/fails and **why**

What about (black box) deep learning?

critically (know) **when** the model succeeds/fails and **why**

What about (black box) deep learning?

Your output should always be delivered with its uncertainty

Quantify uncertainty and pay attention to it

Sir David Cox

critically (know) **when** the model succeeds/fails and **why**

What about (black box) deep learning?

Your output should always be delivered with its uncertainty

Quantify uncertainty and pay attention to it

Can we quantify uncertainty in a meaningful way?

Hallucinations

Concerns In Medical Imaging

Hallucinations

Concerns In Medical Imaging

"The potential lack of generalization of deep learning-based reconstruction methods as well as their innate unstable nature may cause false structures to appear in the reconstructed image that are absent in the object being imaged" — In "On hallucinations in tomographic image reconstruction", IEEE T. Med. Imaging (2021)

In Microscopy

"[...] These hallucinations are deceptive artifacts that appear highly plausible in the absence of contradictory information and can be challenging, if not impossible, to detect."

— In "Applications, promises, and pitfalls of deep learning for fluorescence image reconstruction", *Nature Methods* (2019)

At first, detecting hallucinations felt like

Hallucinations

(Inverse) Problem: Image Reconstruction

Given measurements $y = Ax + e \in \mathbb{C}^m$, of $x \in M_1$, recover x.

Can we understand and prevent hallucinations?

Hallucination busters

(Inverse) Problem: Image Reconstruction

Given measurements y = Ax + e, recover x.

accuracy-stability trade-off for inverse problems

if the accuracy of a method is pushed too far (e.g., by driving the training error to zero), it inevitably becomes unstable.

In-distribution hallucinations, yet existence of non-hallucinating algorithm

Theorem 2

Let $A \in \mathbb{C}^{m \times N}$ with $1 \leq \operatorname{rank}(A) < N$, $\mathbb{T} \subset \mathbb{C}^N$ be a non-empty and finite set, $\delta > 0$, $\Psi: \mathbb{C}^m \to \mathbb{C}^N$ be a neural network with Lipschitz constant L > 0 and $x_{\text{Det}} \in \mathbb{C}^N$ with $||Ax_{\text{Det}}|| \leq \delta/(4L)$. Suppose that Ψ satisfies

$$\max \|\Psi(Ax) - x\| \le \delta.$$

x∈T

Then, for any $\epsilon \ge \delta/(2L)$ there is an uncountable family C of finite or countably infinite sets $M_1 \subset C^N$ with $T \subset M_1$ and $AM_1 \subset B_{\|\cdot\|}(AT, \epsilon)$, such that for each $M_1 \in C$ the following hold simultaneously.

(*i*) (Ψ suffers from in-distribution hallucinations). For any probability distribution D on M₁ with the property that $P_{X\sim D}$ ($X \in T$) $\leq q$, it holds that

 $P_{X \sim D} \quad \exists \lambda \in C, \ |\lambda| = 1 \text{ such that } \|\Psi(AX) - (X + \lambda x_{Det})\| \le 2\delta \ge 1 - q.$

(ii) (There exists an algorithm that yields non-hallucinating NNs). There exists an algorithm Γ taking inputs in A(M₁), such that for each $y \in A(M_1)$, $\Gamma(y) = \Phi_y$ is a NN Φ_y : $C^m \to C^N$ that satisfies

 $\|\Phi_{Ax}(Ax) - x\| \leq \delta, \quad \forall x \in \mathbb{M}_1.$

Theorem 2

Let $A \in \mathbb{C}^{m \times N}$ with $1 \leq \operatorname{rank}(A) < N$, $\mathbb{T} \subset \mathbb{C}^N$ be a non-empty and finite set, $\delta > 0$, $\Psi: \mathbb{C}^m \to \mathbb{C}^N$ be a neural network with Lipschitz constant L > 0 and $x_{\mathsf{Det}} \in \mathbb{C}^N$ with $||Ax_{\mathsf{Det}}|| \leq \delta/(4L)$. Suppose that Ψ satisfies

$\|\Phi_{Ax}(Ax)-x\|\leq \delta,\quad \forall x\in \mathsf{M}_1.$

In-distribution hallucinations

Theorem 2

Let $A \in \mathbb{C}^{m \times N}$ with $1 \leq \operatorname{rank}(A) < N$, $\mathbb{T} \subset \mathbb{C}^N$ be a non-empty and finite set, $\delta > 0$, $\Psi: \mathbb{C}^m \to \mathbb{C}^N$ be a neural network with Lipschitz constant L > 0 and $x_{\mathsf{Det}} \in \mathbb{C}^N$ with $||Ax_{\mathsf{Det}}|| \leq \delta/(4L)$. Suppose that Ψ satisfies

 $\|\Phi_{Ax}(Ax) - x\| \leq \delta, \quad \forall x \in \mathbb{M}_1.$

In-distribution hallucinations

Theorem 2

Let $A \in \mathbb{C}^{m \times N}$ with $1 \leq \operatorname{rank}(A) < N$, $\mathbb{T} \subset \mathbb{C}^N$ be a non-empty and finite set, $\delta > 0$, $\Psi: \mathbb{C}^m \to \mathbb{C}^N$ be a neural network with Lipschitz constant L > 0 and $x_{\text{Det}} \in \mathbb{C}^N$ with $||Ax_{\text{Det}}|| \leq \delta/(4L)$. Suppose that Ψ satisfies

In distribution hallucinations

(Inverse) Problem: Image Reconstruction

Given measurements y = Ax + e, recover x.

Hallucinations arise necessarily as a result of overperformance of a reconstruction map that has no knowledge of the model class M1

Theorem 1

Let $A \in \mathbb{C}^{m \times N}$, $\delta > 0$ and $x, x_{\text{Det}} \in \mathbb{C}^{N}$ with $||Ax_{\text{Det}}|| \leq \delta$.

(i) (Ψ hallucinates by transferring details). Let Ψ : $C^m \to C^N$ be Lipschitz continuous with constant at most L > 0 and suppose that

 $\|\Psi^{(A(x + x_{Det}))} - (x + x_{Det})\| \leq \delta.$

Then for every $e \in \mathbb{C}^m$, with $||e|| \le \delta$ there is $a z \in \mathbb{C}^N$ with $||z|| \le (1 + 2L)\delta$, such that

 $\Psi(Ax + e) = x + x_{\text{Det}} + z.$

Hallucinations due to detail transfer

Hallucinations due to detail transfer

If the

map Ψ performs too well on a certain image x_1 with detail, then it will hallucinate, by incorrectly transferring this detail to another image x_2 .

Know thy modelling

Understand (most parts of) Deep Learning

Understand (most parts of) Hallucinations

Know thy modelling

Understand (most parts of) Deep Learning

Understand (most parts of) Hallucinations

Understand (how to Quantify) Uncertainty

CP is a machine learning framework to produce statistically valid regions

- Computes scores on previously trained data
- and using those to create prediction sets on a new test data

Conformal Prediction (CP)

- Provides prediction regions (sets/intervals) that are guaranteed to satisfy a required level of confidence
- Prediction regions are well-calibrated

- Provides prediction regions (sets/intervals) that are guaranteed to satisfy a required level of confidence
- Prediction regions are well-calibrated
- (only) assumption

data is exchangeable. A set of *N* variables is exchangeable if all the

N! possible orderings of its elements are equally likely

Exchangeable samples should be drawn from the same

distribution but need not be independent (unlike i.i.d.)

Measuring Nonconformity

For every possible label Y_j ∈ {Y₁,..., Y_c} calculate the non-conformity scores

$$\alpha_i^{Y_j} = A(\{z_1, \dots, z_l, z_{l+1}^{Y_j}\}, z_i), \quad i = 1, \dots, l+1$$

where $z_{l+1}^{Y_j} = (x_{l+1}, Y_j).$

Example: Simple regression non-conformity measure:

$$\alpha_i = |y_i - \hat{y}_i|,$$

where \hat{y}_i is the prediction of the underlying regression technique for x_i .

Various options

$$\alpha = \max o^j - o^u,$$

$$\alpha_i = \frac{\sum_{j=1}^{k} S_j^i}{\sum_{j=1}^{k} O_j^i}$$

E.g. *k*-Nearest Neighbours:

Many more

- Multi-label Learning
- Semi-supervised Learning
- Feature selection
- Anomaly detection
- Testing exchangeability / Change Detection in streams
- Active Learning

 New ways of adapting case for non- exchangeability assumption, distribution shifts

Inverse problems (now/new) attempts

- Intervals for each pixel by quantile regression (Angelopoulos et.al)
- Intervals for principal components

Principal Uncertainty Quantification with Spatial Correlation for Image Restoration Problems

Omer Belhasin, Yaniv Romano, Daniel Freedman, Ehud Rivlin, Michael Elad

New ways of adapting case for non- exchangeability assumption, distribution shifts

Inverse problems (now/new) attempts

Intervals for each pixel by quantile regression (Angelopoulos et.al)

Omer Belhasin, Yaniv Romano, Daniel Freedman, Ehud Rivlin, Michael Elad

Know thy modelling

Understand (most parts of) Deep Learning

Understand (most parts of) Hallucinations

Understand (how to Quantify) Uncertainty

Know thy modelling

Understand (most parts of) Deep Learning

Understand (most parts of) Hallucinations

Understand Uncertainty Hallucinations Inverse problems

