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Back to the basic principles 

All models are wrong, but some are useful 

critically (know) when the model succeeds/fails 

and why

What about (black box) deep learning?

Your output should always be delivered with its 

uncertainty 

Quantify uncertainty and pay attention to it 

Can we quantify uncertainty in a meaningful way?



Hallucinations

Concerns In Medical Imaging 



Hallucinations

“The potential lack of generalization of deep learning-based reconstruction 

methods as well as their innate unstable nature may cause false structures to 

appear in the reconstructed image that are absent in the object being imaged”

— In “On hallucinations in tomographic image reconstruction”, IEEE T. 

Med. Imaging (2021)

In Microscopy

“[...] These hallucinations are deceptive artifacts that appear highly plausible in 

the absence of contradictory information and can be challenging, if not 

impossible, to detect.”

— In “Applications, promises, and pitfalls of deep learning for fluorescence 

image reconstruction”, Nature Methods (2019)

Concerns In Medical Imaging 



At first, detecting hallucinations

felt like 



Hallucinations

(Inverse) Problem: Image Reconstruction

Given measurements y = Ax + e ∈ Cm, of x ∈ M1, recover x .

Can we understand and prevent 

hallucinations?

Hallucination



Hallucination busters

(Inverse) Problem: Image Reconstruction

Given measurements y = Ax + e , recover x .

See: N. M. Gottschling, V. Antun, B. Adcock, A. C. Hansen. “The troublesome 

kernel: – On hallucinations, no free lunches and the accuracy-stability trade-off in 

inverse problems”.

accuracy-stability trade-off for inverse 
problems

if the accuracy of a method is pushed too far (e.g., by 

driving the training error to zero), it inevitably becomes 

unstable. 



In-distribution hallucinations, yet existence of non-hallucinating

algorithm

See: N. M. Gottschling, V. Antun, B. Adcock, A. C. Hansen. “The troublesome 

kernel: – On hallucinations, no free lunches and the accuracy-stability trade-off in 

inverse problems”.

Theorem 2
Let A ∈ Cm×N with 1 ≤ rank(A) < N, T ⊂ CN be a non-empty and finite set, δ > 0, Ψ: Cm → CN be
a neural network with Lipschitz constant L > 0 and xDet ∈ CN with ∥AxDet∥ ≤ δ/(4L). Suppose that Ψ

satisfies

x∈T

Then, for any ϵ ≥ δ/(2L) there is an uncountable family Cof finite or countably infinite sets M 1 ⊂ CN

with T ⊂ M 1 and AM 1 ⊂ B∥·∥(AT , ϵ), such that for each M 1 ∈ Cthe following hold simultaneously.

max∥Ψ(Ax) − x∥ ≤ δ.

(i) (Ψ suffers from in-distribution hallucinations). For any probability distribution D on M 1  with 
the property that PX∼ D (X ∈ T ) ≤ q, it holds that

PX∼ D ∃λ ∈ C, |λ| = 1 such that ∥Ψ(AX ) − (X + λxDet)∥ ≤ 2δ ≥ 1 − q.

(ii) (There exists an algorithm that yields non-hallucinating NNs). There exists an algorithm Γ taking 

inputs in A(M1) , such that for each y ∈ A(M1) , Γ(y ) = Φy is a NN Φy : Cm → CN that satisfies

∥ΦAx (Ax ) − x∥ ≤ δ, ∀x ∈ M 1 .
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Suppose that the training set T ⊂ C N is a finite set 
and Ψ is a reconstruction map that achieves small 
error on M1. Then there are infinitely-many model 
classes M1 with T ⊂M1 such that Ψ hallucinates on M1 
with high probability (regardless of the distribution on
M1)



In-distribution hallucinations

See: N. M. Gottschling, V. Antun, B. Adcock, A. C. Hansen. “The troublesome 

kernel: – On hallucinations, no free lunches and the accuracy-stability trade-off in 

inverse problems”.

Theorem 2
Let A ∈ Cm×N with 1 ≤ rank(A) < N, T ⊂ CN be a non-empty and finite set, δ > 0, Ψ: Cm → CN be
a neural network with Lipschitz constant L > 0 and xDet ∈ CN with ∥AxDet∥ ≤ δ/(4L). Suppose that Ψ

satisfies

x∈T

Then, for any ϵ ≥ δ/(2L) there is an uncountable family Cof finite or countably infinite sets M 1 ⊂ CN

with T ⊂ M 1 and AM 1 ⊂ B∥·∥(AT , ϵ), such that for each M 1 ∈ Cthe following hold simultaneously.

max∥Ψ(Ax) − x∥ ≤ δ.

(i) (Ψ suffers from in-distribution hallucinations). For any probability distribution D on M 1  with 
the property that PX∼ D (X ∈ T ) ≤ q, it holds that

PX∼ D ∃λ ∈ C, |λ| = 1 such that ∥Ψ(AX ) − (X + λxDet)∥ ≤ 2δ ≥ 1 − q.

(ii) (There exists an algorithm that yields non-hallucinating NNs). There exists an algorithm Γ taking 

inputs in A(M1) , such that for each y ∈ A(M1) , Γ(y ) = Φy is a NN Φy : Cm → CN that satisfies

∥ΦAx (Ax ) − x∥ ≤ δ, ∀x ∈ M 1 .

However, there exists an algorithm for computing 
NNs that achieve small errors on M1
and therefore do not hallucinate on M1



In-distribution hallucinations
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the property that PX∼ D (X ∈ T ) ≤ q, it holds that

PX∼ D ∃λ ∈ C, |λ| = 1 such that ∥Ψ(AX ) − (X + λxDet)∥ ≤ 2δ ≥ 1 − q.

(ii) (There exists an algorithm that yields non-hallucinating NNs). There exists an algorithm Γ taking 

inputs in A(M1) , such that for each y ∈ A(M1) , Γ(y ) = Φy is a NN Φy : Cm → CN that satisfies

∥ΦAx (Ax ) − x∥ ≤ δ, ∀x ∈ M 1 .

In-distribution hallucinations, 
yet non-hallucinating 

algorithms exist



In distribution hallucinations

(Inverse) Problem: Image Reconstruction

Given measurements y = Ax + e , recover x .

See: N. M. Gottschling, V. Antun, B. Adcock, A. C. Hansen. “The troublesome 

kernel: – On hallucinations, no free lunches and the accuracy-stability trade-off in 

inverse problems”.

Hallucinations arise necessarily as a result of

overperformance of a reconstruction map that has 

no knowledge of the model class M1



Hallucinations due to detail transfer

Theorem 1
Let A ∈ Cm×N, δ > 0 and x, xDet ∈ CN with ∥AxDet∥ ≤ δ.

(i) (Ψ hallucinates by transferring details). Let Ψ: Cm → CN be Lipschitz

continuous with constant at most L > 0 and suppose that

∥Ψ(A(x + xDet)
) − (x + xDet)∥ ≤ δ.

Then for every e∈ Cm, with ∥e∥ ≤  δthere is a z ∈ CN with ∥z ∥ ≤  

(1 +  2L)δ, such that

Ψ(Ax + e) = x + xDet + z.

See: N. M. Gottschling, V. Antun, B. Adcock, A. C. Hansen. “The troublesome 

kernel: – On hallucinations, no free lunches and the accuracy-stability trade-off in 

inverse problems”.
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) − (x + xDet)∥ ≤ δ.
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inverse problems”.

Any map Ψ that recovers the detail image 
x+xDet will hallucinate by incorrectly 

transferring this detail when reconstructing 
the detail-free image x, i.e., Ψ(Ax + e) ≈ x + 

xDet. Thus, a hallucination occurs



Hallucinations due to detail transfer

If the
map Ψ performs too well on a certain image x1 with detail, then it will
hallucinate, by incorrectly transferring this detail to another image x2.



Know thy modelling

Understand (most parts of)

 Deep Learning 
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Hallucinations

Understand (how to

Quantify) Uncertainty



Conformal Prediction (CP)

CP is  a machine learning framework to produce 

statistically valid regions

 Computes scores on previously trained data 

 and using those to create prediction sets on a new 

test data



Conformal Prediction (CP)

 Provides prediction regions (sets/intervals) that are

guaranteed to satisfy a required level of confidence

 Prediction regions are well-calibrated



Conformal Prediction (CP)

 Provides prediction regions (sets/intervals) that are

guaranteed to satisfy a required level of confidence

 Prediction regions are well-calibrated

 (only) assumption 

data is exchangeable. A set of N variables is exchangeable if 

all the

N! possible orderings of its elements are equally likely

Exchangeable samples should be drawn from the 

same 

distribution but need not be independent (unlike i.i.d.)



Measuring Nonconformity

 Example: Simple regression non-conformity measure:

α i =| yi − ŷi |,

where ŷ is the prediction of the underlying regression technique for xi.

1
= A({z ,..., z , z jj

Y
where z

α

j

l+1 l +1 j
= (x ,Y ).

 Various options 

α = max o j −ou ,

.

 E.g. k-Nearest Neighbours:



Many more

 Multi-label Learning

 Semi-supervised Learning

 Feature selection

 Anomaly detection

 Testing exchangeability / Change Detection in streams

 Active Learning



Conformal Prediction (CP)

 New ways of adapting case for non- exchangeability 

assumption, distribution shifts

Inverse problems (now/new ) attempts 

➢ Intervals for each pixel by quantile regression 
(Angelopoulos et.al)

➢ Intervals for principal components 
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Astrophysics
Data
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Know thy modelling

Understand (most parts of)

 Deep Learning 

Understand (most parts of)

Hallucinations

Understand Uncertainty

Hallucinations

Inverse problems

We are here
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