Simulation-Based Inference Stakes and applications

Sacha Guerrini - Cosmology and Statistics Day 01/02/2024

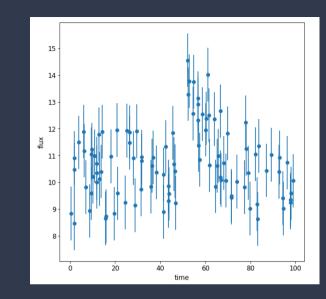
Table of content

- I. Likelihood-Based Inference
- II. Simulation-Based Inference -Principles and Stakes
 III. Simulation-Based Inference -

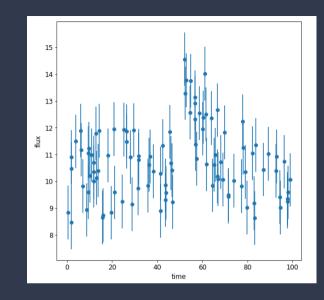
Applications in cosmology

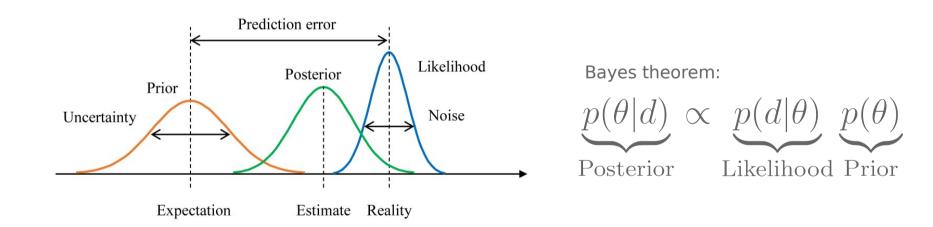
What is inference?

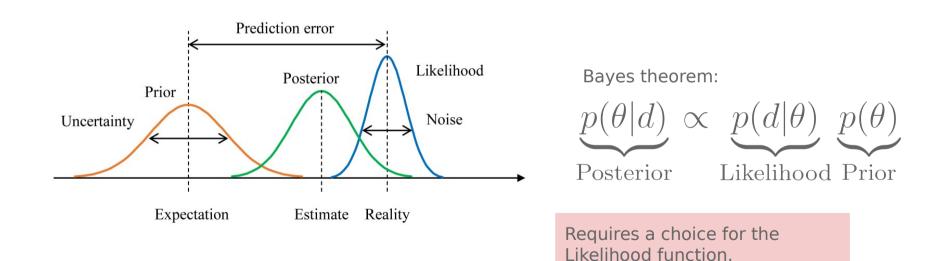
What is inference?



What is inference?







7

Usual assumption: the Gaussian likelihood

 $L(\mathbf{d}|\boldsymbol{\theta}) = (2\pi)^{-m/2} |\mathbf{C}(\boldsymbol{\theta})|^{-1/2} \exp\left[-\frac{1}{2}\boldsymbol{\mu}(\boldsymbol{\theta})^T \mathbf{C}^{-1}(\boldsymbol{\theta})\boldsymbol{\mu}(\boldsymbol{\theta})\right]$

 $\mu = \mathbf{d} - \mathbf{y}(\boldsymbol{\theta})$ Data vector Model prediction

 $\mathbf{C}(\boldsymbol{\theta})$: Covariance matrix

Usual assumption: the Gaussian likelihood

 $L(\mathbf{d}|\boldsymbol{\theta}) = (2\pi)^{-m/2} |\mathbf{C}(\boldsymbol{\theta})|^{-1/2} \exp\left[-\frac{1}{2}\boldsymbol{\mu}(\boldsymbol{\theta})^T \mathbf{C}^{-1}(\boldsymbol{\theta})\boldsymbol{\mu}(\boldsymbol{\theta})\right]$

 $\mu = \mathbf{d} - \mathbf{y}(\boldsymbol{\theta})$ Data vector Model prediction

 $\mathbf{C}(\boldsymbol{\theta})$: Covariance matrix

Can be challenging to estimate

Usual assumption: the Gaussian likelihood

$$L(\mathbf{d}|\boldsymbol{\theta}) = (2\pi)^{-m/2} |\mathbf{C}(\boldsymbol{\theta})|^{-1/2} \exp\left[-\frac{1}{2}\boldsymbol{\mu}(\boldsymbol{\theta})^T \mathbf{C}^{-1}(\boldsymbol{\theta})\boldsymbol{\mu}(\boldsymbol{\theta})\right]$$

 $\boldsymbol{\mu} = \mathbf{d} - \mathbf{y}(\boldsymbol{\theta})$ Data vector Model prediction

$\mathbf{C}(\boldsymbol{\theta})$: Covariance matrix

Can be challenging to estimate

Covariance estimation methods:

- Jackknife/bootstrap resampling
- Sample variance from simulations
- Analytical model

Usual assumption: the Gaussian likelihood

$$L(\mathbf{d}|\boldsymbol{\theta}) = (2\pi)^{-m/2} |\mathbf{C}(\boldsymbol{\theta})|^{-1/2} \exp\left[-\frac{1}{2}\boldsymbol{\mu}(\boldsymbol{\theta})^T \mathbf{C}^{-1}(\boldsymbol{\theta})\boldsymbol{\mu}(\boldsymbol{\theta})\right]$$

 $\mu = \mathbf{d} - \mathbf{y}(\boldsymbol{\theta})$ Data vector Model prediction

 $\mathbf{C}(\boldsymbol{\theta})$: Covariance matrix

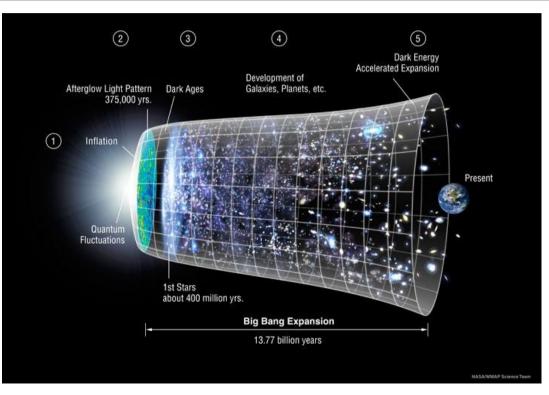
Can be challenging to estimate

Covariance estimation methods:

- Jackknife/bootstrap resampling
- Sample variance from simulations
- Analytical model

Can be cumbersome and/or computationally expensive.

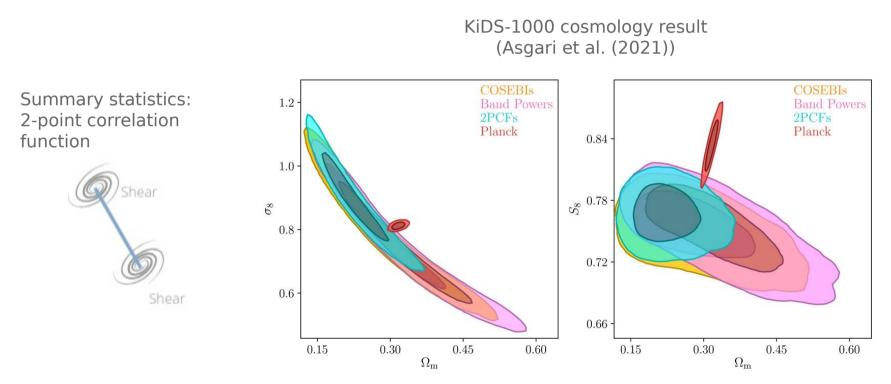
Application: Cosmological parameters inference



The history of the Universe is well described by a few parameters:

- H₀: Current expansion rate
- Ω_m : Matter density
- Ω_b : Baryon density
- Ω_{Λ} : Dark energy density
- σ_8 : Clumpiness
- n_s: Scale index of initial density fluctuations
- w: Evolution of dark energy

Application: Cosmological parameters inference



15

What is problematic with LBI?

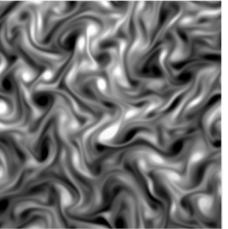
Caveats of Likelihood-Based Inference

- Covariance estimate can be cumbersome.
- Latent variables are intractable and can add systematic effects that needs to be taken into account.
- The Likelihood is not necessarily Gaussian or analytical. (Gaussian assumption do not capture all the information, namely the interactions between scales.)

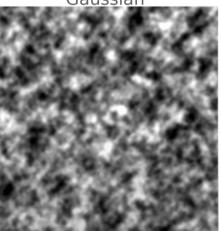
Caveats of Likelihood-Based Inference

- Covariance estimate can be cumbersome.
- Latent variables are intractable and can add systematic effects that needs to be taken into account.
- The Likelihood is not necessarily Gaussian or analytical. (Gaussian assumption do not capture all the information, namely the interactions between scales.)

Turbulent flow



Gaussian



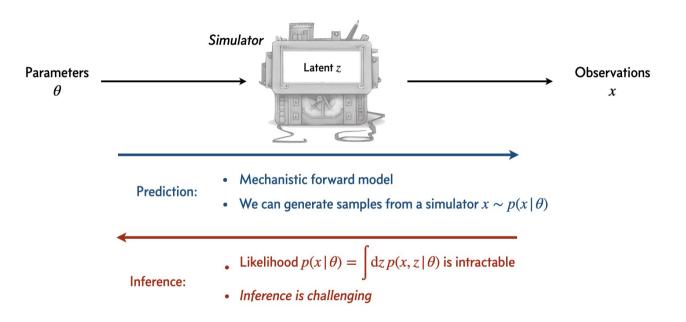


Image Credit: Siddharth Mishra-Sharma

Number of Simulation-based Inference Papers by Year 180 160 140 120 Number of papers 100 80 60 40 20 0 2001-2002-2003-2004 2005 2006-2007 2008-2009. 2010-2011 2012-2013-2014-2015-2016-2017-2018-2019-2020-2021-2022-2023-2024

year

Tools and Resources

Likelihood approximation networks (LANs) for fast inference of simulation models in cognitive neuroscience

Alexander Fengler 🖱, Lakshmi N Govindarajan, Tony Chen, Michael J Frank 🍧

Department of Cognitive, Linguistic and Psychological Sciences, Brown University, United States; Carney Institute for Brain Science, Brown University, United States; Psychology and Neuroscience Department, Boston College, United States

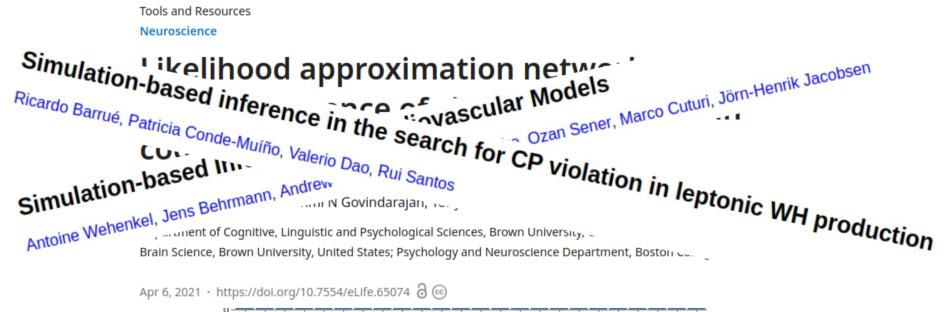
Apr 6, 2021 · https://doi.org/10.7554/eLife.65074 👌 💿

0								-				-		-		-	-		-				
2001	2002	2003	2004	2005	2006	2007	2008	2009	2010	2011	2012	2013	2014	2015	2016	2017	2018	2019	2020	2021.	2022	2023	2024

```
for fast inference of
Cognitie
Simulation-based Inference for Cardiovascular Models
                    Tools and Resources
  Antoine Wehenkel, Jens Behrmann, Andrew C. Miller, Guillermo Sapiro, Ozan Sener, Marco Cuturi, Jörn-Henrik Jacobsen
```

Apr 6, 2021 · https://doi.org/10.7554/eLife.65074 👌 💿

U-	-	-	-	-	-	-	-	-	-	- T	-	-	-	-	-	-	-	-	-	-	-		-	
	2001	2002	2003	2004	2005	2006	2007	2008	2009	2010	2011	2012	2013	2014	2015	2016	2017	2018	2019	2020	2021	2022	2023	2024



2001	2002	2003	2004	2005	2006	2007	2008	2009	2010	2011	2012	2013	2014	2015	2016	2017	2018	2019	2020	2021	2022	2023	2024

Tools and Resources Neuroscience

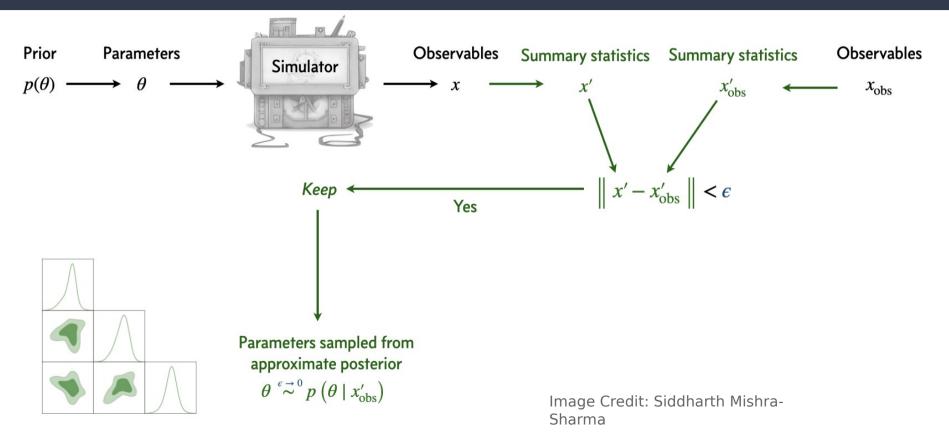
Simulation-based inference and approximation network ----- Cuturi, Jörn-Henrik Jacobsen Ricardo Ram Simulation-Based Inference of Strong Gravitational Lensing Parameters

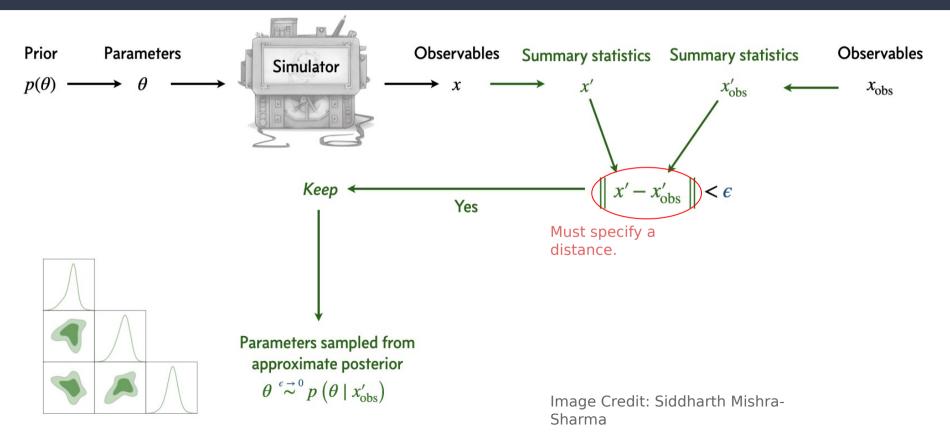
Ronan Legin, Yashar Hezaveh, Laurence Perreault Levasseur, Benjamin Wandelt

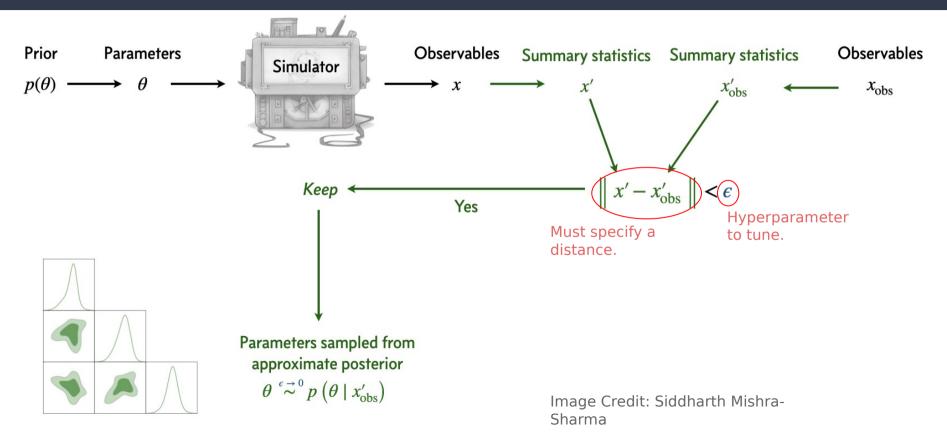
Antoine Wehenkel, Jens Behrmann, Antoine Behr ... eptonic WH production and the second s Brain Science, Brown University, United States; Psychology and Neuroscience Department, Boston 🤐

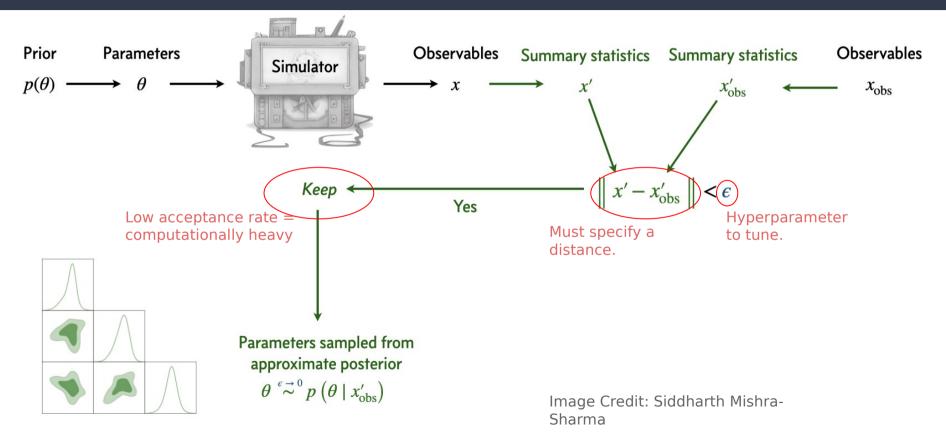
Apr 6, 2021 · https://doi.org/10.7554/eLife.65074 👌 💿

0		-	-		· · ·	-	- T	-		-		-	-	-		-	-	-	-	-	
2001	2003	2004		2002	2008	2009	2010	2011	2012	2013	2014	2015	2016	2017	2018	2019	2020	2021	2022	2023	2024









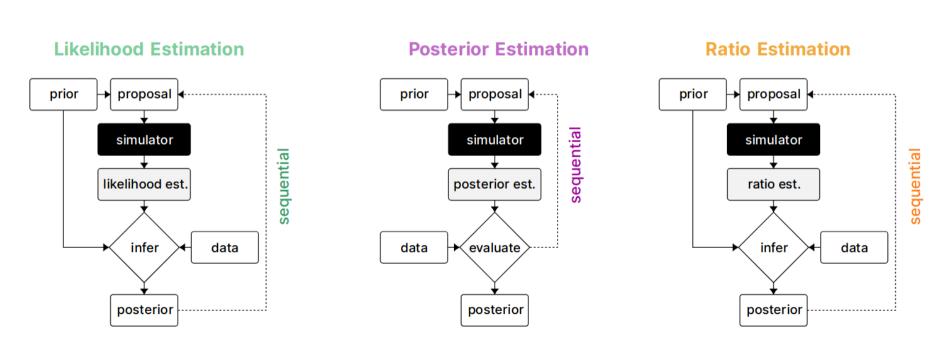


Image Credit: Lueckmann et al.

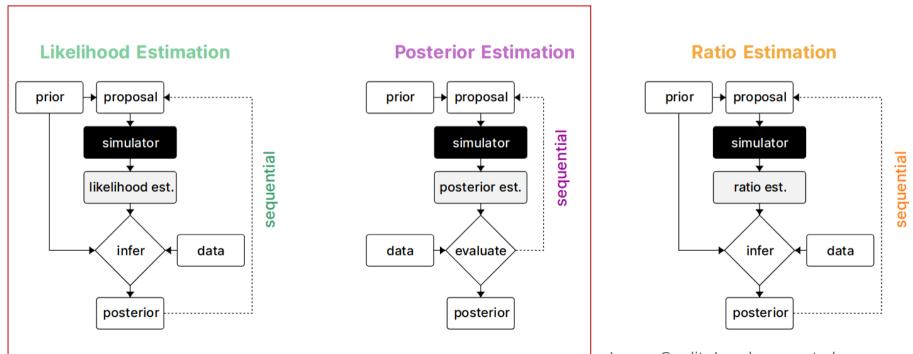
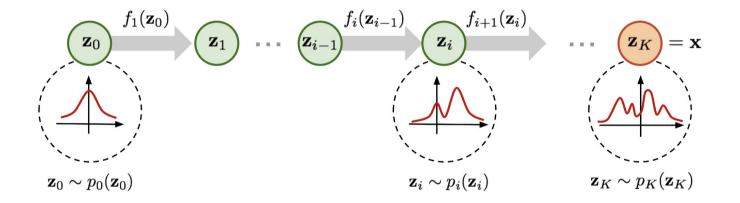


Image Credit: Lueckmann et al.

Normalizing Flows



$$p_i(z_i) = p_{i-1}(f^{-1}(z_i)) \left| \det \frac{df^{-1}}{dz_i} \right|$$

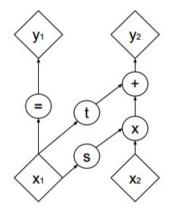
An example: Real NVP

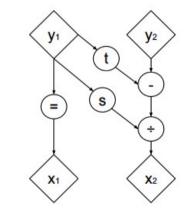
Training data: $(heta, d_{ ext{sim}})$

Loss function: $\ln U = -\sum_{i} \ln p(d_i | \theta_i; w)$

Minimizes KL-divergence w.r.t a target density:

$$D_{\mathrm{KL}}(p^*(d|\theta)||p(d|\theta;w)) = \int p^*(d|\theta) \log\left(\frac{p^*(d|\theta;w)}{p(d|\theta;w)}\right)$$

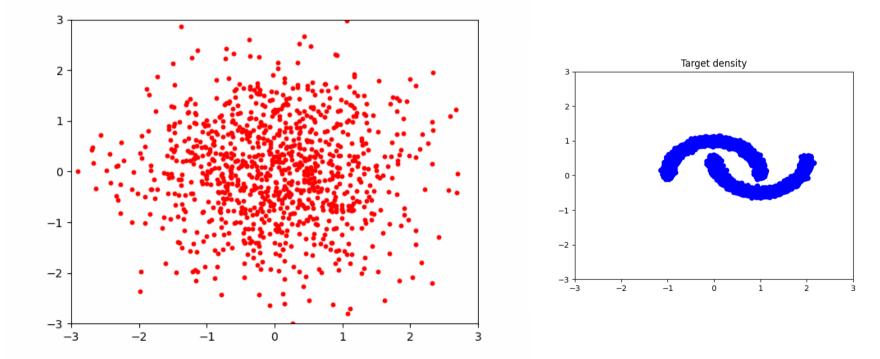




(a) Forward propagation

(b) Inverse propagation

An example: Real NVP



Simulation-Based Inference: Summary

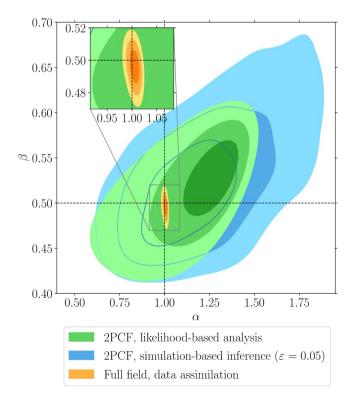
Advantages:

- Does not require any assumption on the form of the likelihood, you learn it.
- Systematics effects can be included in the forward model.
- Straightforward method.
- Can be trained and exploited on GPUs and the model is fully differentiable.

Drawbacks:

- Requires high-quality simulated data. The latter is difficult to assess.
- Uncertainty with neural network is difficult to quantify.
- Training can be long and cumbersome (e.g. compression and pre-training steps)

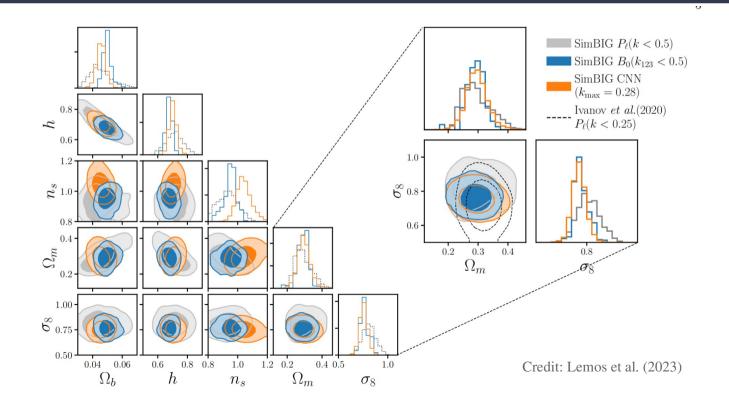
Application: Cosmological parameters inference



Leclercq and Heavens (2021):

- Simplified toy model for cosmology application.
- Likelihood-based analysis does not peak at the accurate mode.

Application: Cosmological parameters inference



Conclusion and summary

Simulation-based inference allows:

- To sample parameters from the posterior without any assumption on the form of the likelihood.
- To include all systematics effects in the forward model.
- To efficiently perform those computations on GPUs.

But:

- One must assess the realism of the simulations used.
- Uncertainty quantification is difficult.

Ressources:

- https://github.com/smsharma/awesome-neural-sbi
- https://simulation-based-inference.org/