Weak Lensing Mass Mapping with Uncertainty Quantification

Hubert Leterme, Postdoc Affiliated to GREYC CNRS-Ensicaen (Caen, France) Co-supervised at CosmoStat, CEA DAp Joint ARGOS-TITAN-TOSCA workshop 2nd February 2024

- **Gravitational lensing**: light rays emitted by distant objects (e.g., galaxies) are deflected by inhomogeneous matter density in the foreground.
- Dark matter cannot be detected by direct observations, but mass mapping can be performed from gravitational lensing observations.
- Weak lensing regime: two types of deformation:
 - **convergence**: isotropic dilation of the source;
 - **shear**: anisotropic stretching of the image.

Convergence + shear $\kappa = 1$ and $\gamma = (0.1 - 0.3 i)$

Source galaxy, unlensed

Convergence only $\kappa = 1$

- Convergence map κ ∈ ℝ^K at a given redshift z: proportional to the projected mass along the line of sight ⇒ variable of interest.
- However, κ cannot be directly measured.
- Relationship between shear and convergence maps: $\gamma = A\kappa$, with
 - $\boldsymbol{\gamma} \in \mathbb{C}^{K}$ true shear map (unknown);
 - $\mathbf{A} \in \mathbb{R}^{K \times K}$ Kaiser-Squires filter (known).

Source galaxy, unlensed

Convergence only

 $\kappa = 1$

Example with the κTNG simulated dataset^1

- As for κ , the true shear map γ cannot be directly measured.
- Unbiased estimator of γ , denoted by $\widehat{\gamma}$, obtained by measuring galaxy ellipticities.
- Relation between $\widehat{\gamma}$ (observable) and κ (quantity of interest):

$$\widehat{\gamma} = \mathbf{A}\mathbf{\kappa} + \mathbf{n}.$$

• Level of noise: depends on the number N_k of observed galaxies at a given pixel k.

¹ http://columbialensing.org/

Number of measured galaxies per pixel + mask (from the COSMOS shape catalog¹):

- At pixel k, $\sigma_k \propto \frac{1}{\sqrt{N_k}}$ (N_k number of measured galaxies).
- Masked data: noise set to an arbitrary large value.

¹ https://astro.uni-bonn.de/en/m/schrabba/research

Noisy shear maps (ellipticities)

Objective: given $\widehat{\gamma}$, estimate $\widehat{\kappa}^-$ and $\widehat{\kappa}^+$ such that $P\{\kappa[k] \notin [\widehat{\kappa}^-[k], \widehat{\kappa}^+[k]]\} \le \alpha$

for a given confidence level $\alpha \in [0, 1[$, for any pixel k.

Requirement: we seek a "fast" mass mapping method (i.e., non-iterative).

Proposed approach

- 1. Compute heuristic bounds $\hat{\kappa}^-$ and $\hat{\kappa}^+$ (Kaiser-Quires, MSE solution, Wiener solution, plug-and-play algorithms, Glimpse, MCAlens...).
- 2. Post-processing: adjust bounds $\hat{\kappa}^-$ and $\hat{\kappa}^+$ using a **calibration set**.
- → Distribution-free UQ, does not assume any prior distribution.
- → Works for any heuristic prediction method, including deep learning.

A simple example: the Kaiser-Squires solution

- Exact solution if $\widehat{\gamma} = \gamma$ (no noise, no mask): $\widehat{\kappa} = \mathbf{A}^{\dagger} \widehat{\gamma}$.
- In practice, the KS filter is followed by Gaussian smoothing: $\hat{\kappa} = \mathbf{S}\mathbf{A}^{\dagger}\hat{\boldsymbol{\gamma}}$.

Estimation of $\hat{\kappa}^-$ and $\hat{\kappa}^+$: we have $\hat{\kappa} \sim N(S\kappa, SA^{\dagger}\Sigma A^{\dagger*}S^*)$.

- $r[k] \coloneqq \Phi_k^{-1}(1 \alpha/2)$ with Φ_k Gaussian CDF at pixel k;
- $\widehat{\kappa}^- \coloneqq \widehat{\kappa} r$ and $\widehat{\kappa}^+ \coloneqq \widehat{\kappa} + r$;

 $\rightarrow \mathbb{P}\{\mathbf{S}\boldsymbol{\kappa}[k] \notin [\widehat{\boldsymbol{\kappa}}^{-}[k], \widehat{\boldsymbol{\kappa}}^{+}[k]]\} \le \alpha \text{ (approximately).}$

• $\hat{\kappa}$ unbiased estimator of $S\kappa$, but biased estimator of κ . So are the bounds $\hat{\kappa}^-$ and $\hat{\kappa}^+$

 $\mathbf{i} \mathbf{k} = \mathbf{k} \left[\mathbf{k} \right] \notin \left[\mathbf{\hat{\kappa}}^{-}[k], \mathbf{\hat{\kappa}}^{+}[k] \right] \leq \alpha ? ?$

Kaiser-Squires bound estimation Estimation of $\hat{\kappa}^-$ and $\hat{\kappa}^+$: we have $\hat{\kappa} \sim N(S\kappa)SA^+\Sigma A^{+*}S^*)$.

- $r[k] \coloneqq \Phi_k^{-1}(1 \alpha/2)$ with Φ_k Gaussian CDF at pixel k;
- $\widehat{\kappa}^- \coloneqq \widehat{\kappa} r$ and $\widehat{\kappa}^+ \coloneqq \widehat{\kappa} + r$;

 $\rightarrow \mathbb{P}\{\mathbf{S}\boldsymbol{\kappa}[k] \notin [\hat{\boldsymbol{\kappa}}^{-}[k], \hat{\boldsymbol{\kappa}}^{+}[k]]\} \le \alpha \text{ (approximately).}$

• $\hat{\kappa}$ unbiased estimator of $S\kappa$, but biased estimator of κ . So are the bounds $\hat{\kappa}^-$ and $\hat{\kappa}^+$ $\rightarrow P\{\kappa[k] \notin [\hat{\kappa}^-[k], \hat{\kappa}^+[k]]\} \le \alpha$?

9

Kaiser-Squires bound estimation Random variable centered in Sk Estimation of $\hat{\kappa}^-$ and $\hat{\kappa}^+$: we have $\hat{\kappa} \sim N(S\kappa, SA^{\dagger}\Sigma A^{\dagger*}S^*)$.

- $r[k] \coloneqq \Phi_k^{-1}(1 \alpha/2)$ with Φ_k Gaussian CDF at pixel k;
- $\widehat{\kappa}^- \coloneqq \widehat{\kappa} r$ and $\widehat{\kappa}^+ \coloneqq \widehat{\kappa} + r$;

 $\rightarrow P\{\mathbf{S\kappa}[k] \notin [\widehat{\kappa}^{-}[k], \widehat{\kappa}^{+}[k]]\} \le \alpha \text{ (approximately).}$

• $\hat{\kappa}$ unbiased estimator of $S\kappa$, but biased estimator of κ . So are the bounds $\hat{\kappa}^-$ and $\hat{\kappa}^+$

 $\rightarrow \mathrm{P}\{\boldsymbol{\kappa}[k] \notin [\widehat{\boldsymbol{\kappa}}^{-}[k], \widehat{\boldsymbol{\kappa}}^{+}[k]]\} \leq \alpha ? ?$ Calibration needed!

Objective (reminder): given $\widehat{\gamma}$, estimate $\widehat{\kappa}^-$ and $\widehat{\kappa}^+$ such that

 $\mathsf{P}\big\{\boldsymbol{\kappa}[k] \notin \big[\widehat{\boldsymbol{\kappa}}^{-}[k], \widehat{\boldsymbol{\kappa}}^{+}[k]\big]\big\} \leq \alpha.$

Conformalized quantile regression (CQR):¹ performed on a **calibration set** $(\hat{\gamma}_i, \kappa_i)_{i=1}^n$. For each pixel k:

1. compute a prediction score on each calibration example:

 $\boldsymbol{e}_{i}[k] \coloneqq \max\{\widehat{\boldsymbol{\kappa}}_{i}^{-}[k] - \boldsymbol{\kappa}_{i}[k], \boldsymbol{\kappa}_{i}[k] - \widehat{\boldsymbol{\kappa}}_{i}^{+}[k]\};$

2. get the $(1 - \alpha)$ -quantile of $(e_i[k])_{i=1}^n$, denoted by $q_{(1-\alpha)}[k]$;

3. adjust the bounds: set
$$\widehat{\kappa}^- \leftarrow \widehat{\kappa}^- - q_{(1-\alpha)}$$
 and $\widehat{\kappa}^+ \leftarrow \widehat{\kappa}^+ + q_{(1-\alpha)}$.

¹ Y. Romano, E. Patterson, and E. Candès, "Conformalized Quantile Regression," in *NeurIPS*, 2019.

 $\widehat{\boldsymbol{\kappa}}_{i}^{+}[k]$

Objective (reminder): given $\widehat{\gamma}$, estimate $\widehat{\kappa}^-$ and $\widehat{\kappa}^+$ such that

 $\mathsf{P}\big\{\boldsymbol{\kappa}[k] \notin \big[\widehat{\boldsymbol{\kappa}}^{-}[k], \widehat{\boldsymbol{\kappa}}^{+}[k]\big]\big\} \leq \alpha.$

Ground truth inside prediction bounds $\rightarrow e_i[k] < 0$

Conformalized quantile regression (CQR):¹ performed on a **calibration set** $(\hat{\gamma}_i, \kappa_i)_{i=1}^n$. For each pixel k:

1. compute a prediction score on each calibration example:

 $\boldsymbol{e}_{i}[k] \coloneqq \max\{\widehat{\boldsymbol{\kappa}}_{i}^{-}[k] - \boldsymbol{\kappa}_{i}[k], \boldsymbol{\kappa}_{i}[k] - \widehat{\boldsymbol{\kappa}}_{i}^{+}[k]\};$

- 2. get the (1α) -quantile of $(e_i[k])_{i=1}^n$, denoted by $q_{(1-\alpha)}[k]$;
- 3. adjust the bounds: set $\hat{\kappa}^- \leftarrow \hat{\kappa}^- q_{(1-\alpha)}$ and $\hat{\kappa}^+ \leftarrow \hat{\kappa}^+ + q_{(1-\alpha)}$.

 $\widehat{\kappa}_i^+[k]$ $\kappa_i[k]$ -

```
Ground truth outside
prediction bounds \rightarrow e_i[k] > 0
```

Objective (reminder): given $\hat{\gamma}$, estimate $\hat{\kappa}^-$ and $\hat{\kappa}^+$ such that

 $\mathsf{P}\{\boldsymbol{\kappa}[k] \notin [\widehat{\boldsymbol{\kappa}}^{-}[k], \widehat{\boldsymbol{\kappa}}^{+}[k]]\} \leq \alpha.$

Conformalized quantile regression (CQR):¹ performed on a **calibration set** $(\widehat{\boldsymbol{\gamma}}_i, \boldsymbol{\kappa}_i)_{i=1}^n$. For each pixel k:

compute a prediction score on each calibration example: 1.

 $\boldsymbol{e}_{i}[k] \coloneqq \max\{\widehat{\boldsymbol{\kappa}}_{i}^{-}[k] - \boldsymbol{\kappa}_{i}[k], \boldsymbol{\kappa}_{i}[k] - \widehat{\boldsymbol{\kappa}}_{i}^{+}[k]\};$

- get the (1α) -quantile of $(e_i[k])_{i=1}^n$, denoted by $q_{(1-\alpha)}[k]$; 2.
- adjust the bounds: set $\widehat{\kappa}^- \leftarrow \widehat{\kappa}^- q_{(1-\alpha)}$ and $\widehat{\kappa}^+ \leftarrow \widehat{\kappa}^+ + q_{(1-\alpha)}$. 3.

 $\boldsymbol{\kappa}_{i}[k]$

 $\widehat{\boldsymbol{\kappa}}_{i}^{+}[k]$

Objective (reminder): given $\hat{\gamma}$, estimate $\hat{\kappa}^-$ and $\hat{\kappa}^+$ such that

 $\mathsf{P}\{\boldsymbol{\kappa}[k] \notin [\widehat{\boldsymbol{\kappa}}^{-}[k], \widehat{\boldsymbol{\kappa}}^{+}[k]]\} \leq \alpha.$

Conformalized quantile regression (CQR):¹ performed on a **calibration set** $(\widehat{\boldsymbol{\gamma}}_i, \boldsymbol{\kappa}_i)_{i=1}^n$. For each pixel k:

compute a prediction score on each calibration example: 1.

> $\boldsymbol{e}_{i}[k] \coloneqq \max\{\widehat{\boldsymbol{\kappa}}_{i}^{-}[k] - \boldsymbol{\kappa}_{i}[k], \boldsymbol{\kappa}_{i}[k] - \widehat{\boldsymbol{\kappa}}_{i}^{+}[k]\};$ $\rightarrow q_{(1-\alpha)}[k] = 0$

2. get the
$$(1 - \alpha)$$
-quantile of $(e_i[k])_{i=1}^n$, denoted by $q_{(1-\alpha)}[k]$; Well-calibrated -

adjust the bounds: set $\hat{\kappa}^- \leftarrow \hat{\kappa}^- - q_{(1-\alpha)}$ and $\hat{\kappa}^+ \leftarrow \hat{\kappa}^+ + q_{(1-\alpha)}$ Undercoverage $\rightarrow q_{(1-\alpha)}[k] > 0$ Overcoverage $\rightarrow q_{(1-\alpha)}[k] < 0$ 3.

 $\widehat{\boldsymbol{\kappa}}_{i}^{+}[k]$

Objective (reminder): given $\widehat{\gamma}$, estimate $\widehat{\kappa}^-$ and $\widehat{\kappa}^+$ such that

 $\mathsf{P}\big\{\boldsymbol{\kappa}[k] \notin \big[\widehat{\boldsymbol{\kappa}}^{-}[k], \widehat{\boldsymbol{\kappa}}^{+}[k]\big]\big\} \leq \alpha.$

Conformalized quantile regression (CQR):¹ performed on a **calibration set** $(\hat{\gamma}_i, \kappa_i)_{i=1}^n$. For each pixel k:

1. compute a prediction score on each calibration example:

 $\boldsymbol{e}_{i}[k] \coloneqq \max\{\widehat{\boldsymbol{\kappa}}_{i}^{-}[k] - \boldsymbol{\kappa}_{i}[k], \boldsymbol{\kappa}_{i}[k] - \widehat{\boldsymbol{\kappa}}_{i}^{+}[k]\};$

- 2. get the (1α) -quantile of $(e_i[k])_{i=1}^n$, denoted by $q_{(1-\alpha)}[k]$;
- 3. adjust the bounds: set $\hat{\kappa}^- \leftarrow \hat{\kappa}^- q_{(1-\alpha)}$ and $\hat{\kappa}^+ \leftarrow \hat{\kappa}^+ + q_{(1-\alpha)}$.

 $\boldsymbol{q}_{(1-\alpha)}[k] \quad \boldsymbol{k} \\ \boldsymbol{\hat{\kappa}}_{i}^{+}[k] \quad \boldsymbol{k}$

 $\widehat{\boldsymbol{\kappa}}_{i}^{-}[k] = \boldsymbol{q}_{(1-\alpha)}[k]$

Objective (reminder): given $\widehat{\gamma}$, estimate $\widehat{\kappa}^-$ and $\widehat{\kappa}^+$ such that

 $\mathsf{P}\big\{\boldsymbol{\kappa}[k] \notin \big[\widehat{\boldsymbol{\kappa}}^{-}[k], \widehat{\boldsymbol{\kappa}}^{+}[k]\big]\big\} \leq \alpha.$

Conformalized quantile regression (CQR):¹ performed on a **calibration set** $(\hat{\gamma}_i, \kappa_i)_{i=1}^n$. For each pixel k:

1. compute a prediction score on each calibration example:

 $\boldsymbol{e}_{i}[k] \coloneqq \max\{\widehat{\boldsymbol{\kappa}}_{i}^{-}[k] - \boldsymbol{\kappa}_{i}[k], \boldsymbol{\kappa}_{i}[k] - \widehat{\boldsymbol{\kappa}}_{i}^{+}[k]\};$

2. get the $(1 - \alpha)$ -quantile of $(e_i[k])_{i=1}^n$, denoted by $q_{(1-\alpha)}[k]$;

3. adjust the bounds: set
$$\widehat{\kappa}^- \leftarrow \widehat{\kappa}^- - q_{(1-\alpha)}$$
 and $\widehat{\kappa}^+ \leftarrow \widehat{\kappa}^+ + q_{(1-\alpha)}$.

 $\widehat{\boldsymbol{\kappa}}_{i}^{+}[k]$

Objective (reminder): given $\widehat{\gamma}$, estimate $\widehat{\kappa}^-$ and $\widehat{\kappa}^+$ such that

 $\mathsf{P}\big\{\boldsymbol{\kappa}[k] \notin \big[\widehat{\boldsymbol{\kappa}}^{-}[k], \widehat{\boldsymbol{\kappa}}^{+}[k]\big]\big\} \leq \alpha.$

Conformalized quantile regression (CQR):¹ performed on a **calibration set** $(\hat{\gamma}_i, \kappa_i)_{i=1}^n$. For each pixel k:

1. compute a prediction score on each calibration example:

 $\boldsymbol{e}_{i}[k] \coloneqq \max\{\widehat{\boldsymbol{\kappa}}_{i}^{-}[k] - \boldsymbol{\kappa}_{i}[k], \boldsymbol{\kappa}_{i}[k] - \widehat{\boldsymbol{\kappa}}_{i}^{+}[k]\};$

- 2. get the (1α) -quantile of $(e_i[k])_{i=1}^n$, denoted by $q_{(1-\alpha)}[k]$;
- 3. adjust the bounds: set $\widehat{\kappa}^- \leftarrow \widehat{\kappa}^- q_{(1-\alpha)}$ and $\widehat{\kappa}^+ \leftarrow \widehat{\kappa}^+ + q_{(1-\alpha)}$.

THEOREM:¹ $\alpha - 1/n+1 \leq P\{\kappa[k] \notin [\widehat{\kappa}^{-}[k], \widehat{\kappa}^{+}[k]] | (\widehat{\gamma}_{i}, \kappa_{i})_{i=1}^{n}\} \leq \alpha$ for any pixel k.

 $\widehat{\boldsymbol{\kappa}}_{i}^{+}[k]$

Objective (reminder): given $\widehat{\gamma}$, estimate $\widehat{\kappa}^-$ and $\widehat{\kappa}^+$ such that

 $\mathsf{P}\big\{\boldsymbol{\kappa}[k] \notin \big[\widehat{\boldsymbol{\kappa}}^{-}[k], \widehat{\boldsymbol{\kappa}}^{+}[k]\big]\big\} \leq \alpha.$

Conformalized quantile regression (CQR):¹ performed on a **calibration set** $(\hat{\gamma}_i, \kappa_i)_{i=1}^n$. For each pixel k:

1. compute a prediction score on each calibration example:

 $\boldsymbol{e}_{i}[k] \coloneqq \max\{\widehat{\boldsymbol{\kappa}}_{i}^{-}[k] - \boldsymbol{\kappa}_{i}[k], \boldsymbol{\kappa}_{i}[k] - \widehat{\boldsymbol{\kappa}}_{i}^{+}[k]\};$

- 2. get the (1α) -quantile of $(e_i[k])_{i=1}^n$, denoted by $q_{(1-\alpha)}[k]$;
- 3. adjust the bounds: set $\widehat{\kappa}^- \leftarrow \widehat{\kappa}^- q_{(1-\alpha)}$ and $\widehat{\kappa}^+ \leftarrow \widehat{\kappa}^+ + q_{(1-\alpha)}$.

THEOREM: $\alpha - 1/n+1 \leq P\{\kappa[k] \notin [\widehat{\kappa}^{-}[k], \widehat{\kappa}^{+}[k]] | (\widehat{\gamma}_i, \kappa_i)_{i=1}^n \} \leq \alpha$ for any pixel k.

Conditionally to a specific

calibration set

¹ Y. Romano, E. Patterson, and E. Candès, "Conformalized Quantile Regression," in *NeurIPS*, 2019.

 $\widehat{\boldsymbol{\kappa}}_{i}^{+}[k]$

Objective (reminder): given $\widehat{\gamma}$, estimate $\widehat{\kappa}^-$ and $\widehat{\kappa}^+$ such that

 $\mathsf{P}\big\{\boldsymbol{\kappa}[k] \notin \big[\widehat{\boldsymbol{\kappa}}^{-}[k], \widehat{\boldsymbol{\kappa}}^{+}[k]\big]\big\} \leq \alpha.$

Conformalized quantile regression (CQR):¹ performed on a **calibration set** $(\hat{\gamma}_i, \kappa_i)_{i=1}^n$. For each pixel k:

1. compute a prediction score on each calibration example:

 $\boldsymbol{e}_{i}[k] \coloneqq \max\{\widehat{\boldsymbol{\kappa}}_{i}^{-}[k] - \boldsymbol{\kappa}_{i}[k], \boldsymbol{\kappa}_{i}[k] - \widehat{\boldsymbol{\kappa}}_{i}^{+}[k]\};$

- 2. get the (1α) -quantile of $(e_i[k])_{i=1}^n$, denoted by $q_{(1-\alpha)}[k]$;
- 3. adjust the bounds: set $\widehat{\kappa}^- \leftarrow \widehat{\kappa}^- q_{(1-\alpha)}$ and $\widehat{\kappa}^+ \leftarrow \widehat{\kappa}^+ + q_{(1-\alpha)}$.

THEOREM:¹ $\alpha - \frac{1}{n+1} \leq P\{\kappa[k] \notin [\hat{\kappa}^-[k], \hat{\kappa}^+[k]] | (\hat{\gamma}_i, \kappa_i)_{i=1}^n\} \leq \alpha$ for any pixel k. Upper bound: coverage guarantee

 $\widehat{\boldsymbol{\kappa}}_{i}^{+}[k]$

Objective (reminder): given $\widehat{\gamma}$, estimate $\widehat{\kappa}^-$ and $\widehat{\kappa}^+$ such that

 $\mathsf{P}\big\{\boldsymbol{\kappa}[k] \notin \big[\widehat{\boldsymbol{\kappa}}^{-}[k], \widehat{\boldsymbol{\kappa}}^{+}[k]\big]\big\} \leq \alpha.$

Conformalized quantile regression (CQR):¹ performed on a **calibration set** $(\hat{\gamma}_i, \kappa_i)_{i=1}^n$. For each pixel k:

1. compute a prediction score on each calibration example:

 $\boldsymbol{e}_{i}[k] \coloneqq \max\{\widehat{\boldsymbol{\kappa}}_{i}^{-}[k] - \boldsymbol{\kappa}_{i}[k], \boldsymbol{\kappa}_{i}[k] - \widehat{\boldsymbol{\kappa}}_{i}^{+}[k]\};$

- 2. get the (1α) -quantile of $(e_i[k])_{i=1}^n$, denoted by $q_{(1-\alpha)}[k]$;
- 3. adjust the bounds: set $\widehat{\kappa}^- \leftarrow \widehat{\kappa}^- q_{(1-\alpha)}$ and $\widehat{\kappa}^+ \leftarrow \widehat{\kappa}^+ + q_{(1-\alpha)}$.

THEOREM:¹
$$\alpha - 1/_{n+1} \leq P\{\kappa[k] \notin [\widehat{\kappa}^{-}[k], \widehat{\kappa}^{+}[k]] | (\widehat{\gamma}_i, \kappa_i)_{i=1}^n\} \leq \alpha$$
 for any pixel k.

Lower bound: prevents overconservative prediction bounds

¹ Y. Romano, E. Patterson, and E. Candès, "Conformalized Quantile Regression," in *NeurIPS*, 2019.

 $\widehat{\boldsymbol{\kappa}}_{i}^{+}[k]$

Objective (reminder): given $\widehat{\gamma}$, estimate $\widehat{\kappa}^-$ and $\widehat{\kappa}^+$ such that

 $\mathsf{P}\big\{\boldsymbol{\kappa}[k] \notin \big[\widehat{\boldsymbol{\kappa}}^{-}[k], \widehat{\boldsymbol{\kappa}}^{+}[k]\big]\big\} \leq \alpha.$

Conformalized quantile regression (CQR):¹ performed on a **calibration set** $(\hat{\gamma}_i, \kappa_i)_{i=1}^n$. For each pixel k:

1. compute a prediction score on each calibration example:

 $\boldsymbol{e}_{i}[k] \coloneqq \max\{\widehat{\boldsymbol{\kappa}}_{i}^{-}[k] - \boldsymbol{\kappa}_{i}[k], \boldsymbol{\kappa}_{i}[k] - \widehat{\boldsymbol{\kappa}}_{i}^{+}[k]\};$

- 2. get the (1α) -quantile of $(e_i[k])_{i=1}^n$, denoted by $q_{(1-\alpha)}[k]$;
- 3. adjust the bounds: set $\widehat{\kappa}^- \leftarrow \widehat{\kappa}^- q_{(1-\alpha)}$ and $\widehat{\kappa}^+ \leftarrow \widehat{\kappa}^+ + q_{(1-\alpha)}$.

THEOREM: $\alpha - 1/n+1 \leq P\{\kappa[k] \notin [\widehat{\kappa}^{-}[k], \widehat{\kappa}^{+}[k]] | (\widehat{\gamma}_{i}, \kappa_{i})_{i=1}^{n}\} \leq \alpha$ for any pixel k. Works for any blackbox quantile predictor!

¹ Y. Romano, E. Patterson, and E. Candès, "Conformalized Quantile Regression," in *NeurIPS*, 2019.

 $\widehat{\boldsymbol{\kappa}}_{i}^{+}[k]$

CQR calibration

CQR calibration

Target: $\alpha \approx 4,6\%$ (2 σ -confidence) Undercoverage near the edges n = 100 (size of the calibration set)

CQR calibration

Target: $\alpha \approx 4,6\%$ (2 σ -confidence) n = 100 (size of the calibration set)

 \rightarrow These experiments are in line with the theoretical results.

CQR calibration – length of prediction sets

Ground truth = $S\kappa$ (unbiased estimator)

Ground truth = $S\kappa$ (unbiased estimator)

Ground truth = κ (biased estimator)

Ground truth = κ (biased estimator)

CQR calibration – still biased??

• Back to the theoretical guarantee:

$$\alpha - \frac{1}{n+1} \leq P\{\boldsymbol{\kappa}[k] \notin [\widehat{\boldsymbol{\kappa}}^{-}[k], \widehat{\boldsymbol{\kappa}}^{+}[k]] | (\widehat{\boldsymbol{\gamma}}_{i}, \boldsymbol{\kappa}_{i})_{i=1}^{n}\} \leq \alpha.$$

• Conditioned on the calibration set, but NOT on the neighboring pixels. E.g.,

$$\alpha - \frac{1}{n+1} \leq P\{\boldsymbol{\kappa}[k] \notin [\widehat{\boldsymbol{\kappa}}^{-}[k], \widehat{\boldsymbol{\kappa}}^{+}[k]] \mid \mathbf{S}\boldsymbol{\kappa}[k], (\widehat{\boldsymbol{\gamma}}_{i}, \boldsymbol{\kappa}_{i})_{i=1}^{n}\} \leq \alpha.$$

 \rightarrow CQR could fail to provide valid coverage guarantees in the regions of interest!

CQR calibration – still biased??

Ratio of pixels falling outside the predicted bounds: $\kappa[k] \notin [\widehat{\kappa}^{-}[k], \widehat{\kappa}^{+}[k]]$, conditioned on the value of $S\kappa[k]$.

CQR calibration – still biased??

Ratio of pixels falling outside the predicted bounds: $\kappa[k] \notin [\widehat{\kappa}^{-}[k], \widehat{\kappa}^{+}[k]]$, conditioned on the value of $S\kappa[k]$.

Way above target for large values of convergence!

Next steps

- Run similar experiments on more advanced reconstruction methods.
- In particular, apply plug-and-play methods to this framework?
- Adapt the results to simulated galaxy shape catalogs predicting results from SKA (T-RECS).¹
- Can we get coverage guarantees conditionally to the neighboring pixels? E.g., around peak values.
- Detection of extensive objects: existing work based on prediction masks.²
- Other avenue: exploit correlation between pixels?³

¹ A. Bonaldi et al., "The Tiered Radio Extragalactic Continuum Simulation (T-RECS)," Monthly Notices of the Royal Astronomical Society, vol. 482, no. 1, pp. 2–19, Jan. 2019.

² G. Kutiel, R. Cohen, M. Elad, and D. Freedman, "What's Behind the Mask: Estimating Uncertainty in Image-to-Image Problems." arXiv, Nov. 28, 2022.

³ O. Belhasin, Y. Romano, D. Freedman, E. Rivlin, and M. Elad, "Principal Uncertainty Quantification with Spatial Correlation for Image Restoration Problems." arXiv, May 17, 2023. ¹⁹