

LePHARE and recent developments for LSST

Olivier Ilbert, Johann Cohen-Tanugi, Raphael Shirley, Mara Salvato, Stephane Arnouts

- Template-fitting code based on a χ^2 minimisation
- several set of templates, dust attenuations, emission lines recipes, ...
- Stars, galaxies, and AGN fit seperately
- Possible priors
- Photo-z and physical parameters in output, as well as associated PDF

Originally a fortran code

New ct-t-version

Olivier Ilbert, Johann Cohen-Tanugi with the help of several others

- Completely re-writen in c++ https://gitlab.lam.fr/Galaxies/LEPHARE
- Parallelized
- Better optimized (hopfully...)
- Python interface using pybind
 - ☆ C++ classes can be used as library
 - ☆ The code can be fully run through notebooks
 - ☆ Allow to manipulate any input/output format available in python
 - ☆ Legacy way to run the code still available

Template-fitting code used/tested intensively in the last >20 years

Applied on many simulations

Horizon-AGN cosmological simulation ➤ complex histories and diversity of galaxies

Template-fitting code used/tested intensively in the last >20 years

Applied to many surveys

COSMOS, Laigle+2016

Various set of templates depending on the information contained in the multi-wavelength data

Several dust attenuation laws could be considered simultaneously

Absolutely necessary, even with broad bands Two possible recipes

Bayesian approach could be chosen to derive the PDF and then the photo-z

the plausionity of the corresponding values of 2 of 7. On the contrary, Bayesian probability averages over all the likelihoods after weighting them by their prior probabilities, $p(z, T | m_0)$. In this way, the estimation is not affected by spurious likelihood peaks caused by noise (Fig. 2; see also

N(z) prior and simple priors on the absolute magnitude range

N(z) prior from Benitez 2000 but improved in Ilbert+2006

Probability Distribution Function

PDF and associated quantities as point estimates and 68% uncertainties

The output

The output Classification

Run the galaxies/stars/AGNlibraries separately➤ minimum χ² associated toeach library

Extract of the physical properties and associated PDF For instance: stellar masses, rest-frame colors, SFR, specific SFR, E(B-V), ...

Shuntov+24

Arnouts+13

LSST Interdisciplinary Network for Collaborattion and Computing

- \$22k
- 3 months with software developers, Drew Oldag (UW), Olivia Lynn (CM), Jeremy Kubica (CM), in addition to Raphael Shirley and Johann Cohen-Tanugi
- Feb 17 to May 17
- Moving from GitLab to GitHub
- CI/CD with mac deployment
- RAIL interface via Python
- pip install lephare experimental stage

RAIL Redshift Assessment and Infrastructure Layers

Visualisation of various metrics

Point estimate performance and Probability Integral Transform (PIT)

Schmidt et al. 2020

LePHARE Ongoing and future steps

- Documentation for the github and RAIL version
- Include CLAUDS/HSC as test in RAIL
- Optimize the configuration for LSST
- German inkind contribution led by M. Salvato and Raphaël Shirley
 - Developing LePHARE AGN capacities targeted towards LSST but for general multiwavelength surveys
 - Add new prior functionalities
- Always improve the physics/codes based on our current work, specially COSMOS-Web

NIRCam Detection

UVISTA-H

16

Ground based + JWST data on COSMOS Shuntov, Paquereau et al., in prep

NIRCam Detection

1

Ground based + JWST data on COSMOS Shuntov, Paquereau et al., in prep

