

Focal plane commissioning

LSST-France, 11 June 2024 Parallel session

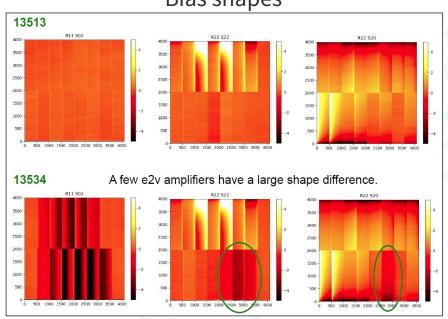
Ongoing activities

- Data replication
- LSSTCam / ISR
- CCD configuration optimization
- Data quality / investigations of puzzling effects
- Bias correction strategy
- PTC (Brighter-Fatter and gains)
- Calibration validation

- CCOB
- CBP
- Photometry

Data replication (Fabio+Thibault)

- Goal: to replicate in-dome calibration images from USDF to FrDF
 - To use FrDF's capacity for studying those data
 - Recorded in <u>PREOPS-4853</u>
- For LSSTCam focal plane tests data we used some components of the replication machinery we plan to use in operations
 - It worked reasonably well, even if we found some aspects to improve
 - Ingestion into FrDF's local butler was done by an ad-hoc solution: the long term solution is being developed and tested, first at SLAC then at EU DFs
- Replicating ComCam data would use the same tools we are currently testing for the operations phase
 - Our goal is to replicate that data to FrDF, after the 30 days-long embargo period during the commissioning phase
 - From our experience replicating Run6 data, the photodiodes files are needed and they were not part of the data automatically replicated

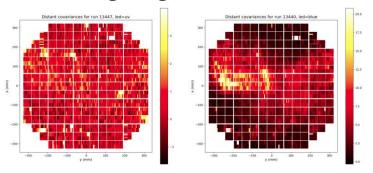

CCD configuration optimization (Claire+Pierre An.+Pierre As.+Thibault)

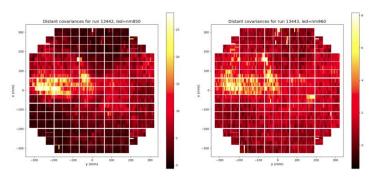
Ex: test of voltage configurations in Run 6

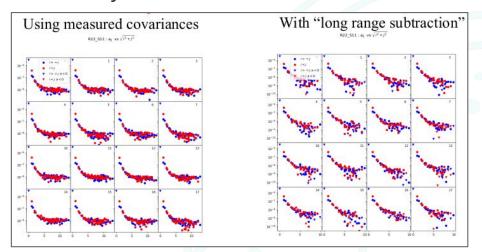
New voltages for e2v

	Pre Run5	Run5	Run 6a	new	
pclkHigh	3.6	3.3	3.0	3.3	Tearing / Persistence / P4
pclkLow	-6.0	-6.0	-6.0	-6.0	Constraint from HV
sclkHigh	3.9	3.9	3.9	3.6	
sclkLow	-5.4	-5.4	-5.4	-5.7	
rgHigh	6.1	6.1	6.1	5.8	
rgLow	-4.0	-4.0	-4.0	-4.3	
rd	11.6	11.6	11.6	11.3	
od	23.4	23.4	23.4	23.1	
og	-3.4	-3.4	-3.4	-3.7	
gd	26.0	26.0	26.0	26.0	
Expectation		Mitigation of Divisadero tearing	Mitigation of Persistence	Mitigation of incomplete reset?	

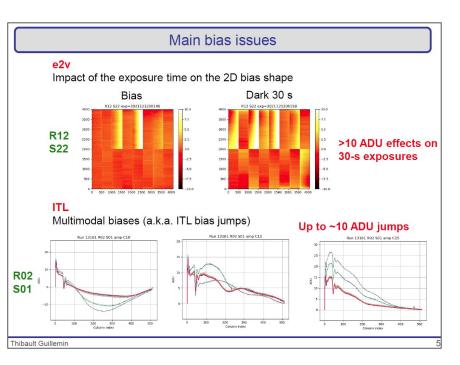
Bias shapes


From Yousuke

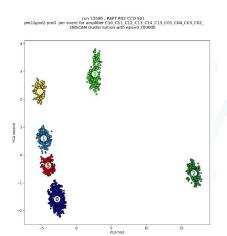

Noise, persistence, stability, etc.


Data quality / investigations of puzzling effects (Claire+Pierre An.+Pierre As.+Thibault)

Ex: long range covariances in Run 6 flats



- Effect depends on LEDs (pattern and intensity)
- Needed to model this effect for PTC analysis



Bias correction strategy (Pierre An.+ Thibault)

eo_pipe studies of OpSim runs

1.3 1.4

MID - 60264

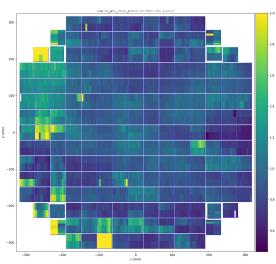
1.5

Identification of ITL families

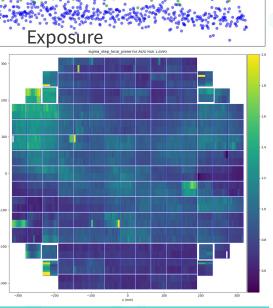
1.1

Brighter-Fatter (Pierre As.)

- On Auxtel, because of the fine image sampling (FWHM ~ 10 pixels) the BF effect is probably far too small to provide an interesting test on the sky.
- Comcam is the next opportunity. There are flat series already available, but we
 could rely on the in-dome flat system. For non-linearity, the illumination
 monitoring system should deliver a proper reference, once properly configured.
- Regarding DM code, the situation is confusing:
 - The non-linearity fit is implemented but not available yet (nor its performance characterized, AFAIK)
 - For image BF-correction, there are competing options, and I don't know how decisions will be made.
 - I would advocate that comcam will be an excellent sandbox.



Gain correction (Pierre An.+Yassine)


0.0003

Some itl ccds present gain variations as seen in R01 S02 for run 13590 (one color per gain value organized per "family"):

If we take those gain values per family into consideration we can reduce itl's raft dispersion and bring them to e2v level:

Varaiation On the left general dispersion, on the right dispersion with family identification

R01 S02

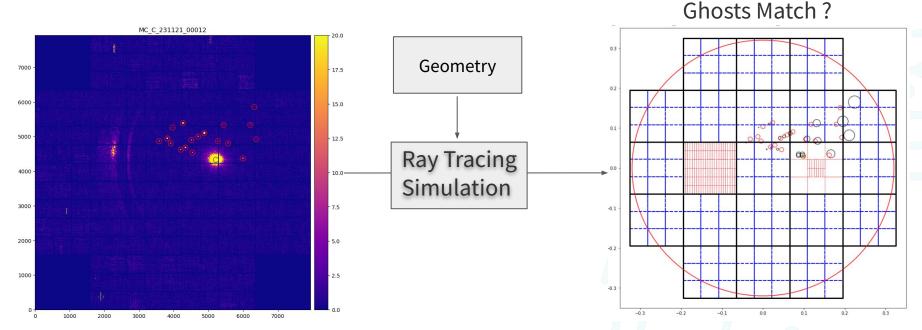
Calibration validation (Thibault)

Mainly just following this activity recently... Critical activity with a LOT of things to validate Calibration Rehearsal 27-29 May

Validation chain

cp_pipe → calibration collections

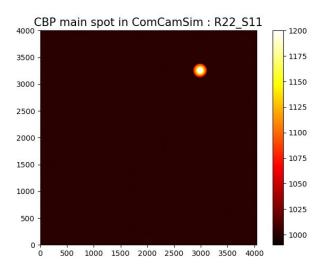
- → cp_verify → statistics results
- → analysis_tools → metrics/plots
- → web report for TAXICAB


Web report (Chris Waters)

- Use butler to find all relevant input datasets:
 - analysis tools plots and metrics.
 - cp_verify focal plane residual mosaics and final result table.
 - cp_pipe focal plane calibration mosaics.
- Copy input datasets to output src directory, with:
 - FITS mosaics converted to PNG plots.
 - o analysis_tools metric bundles converted to tables.
 - cp_verify results converted to tables.
- Iterate over calibration type (bias, dark, etc), generating:
 - An index page containing focal plane results and metric bundle tables.
 - o An exposure page containing per-exposure plots and metrics, organized by exposure.
 - A detector page containing per-detector plots and metrics, organized by detector.
- Clearly label everything with the butler collection, dataset_type, dataId.
- The full camera will need navigation helpers.

CCOB Narrow Beam (Johan)

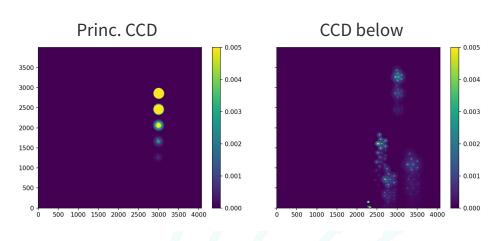
Camera Optics alignment and transmission measurement



Narrow beam Run 6 data

CBP (Jérémy+Nathan)

CBP spot in ComCam Image simulation with Batoid + ImSim



Goal: photometry with this spot

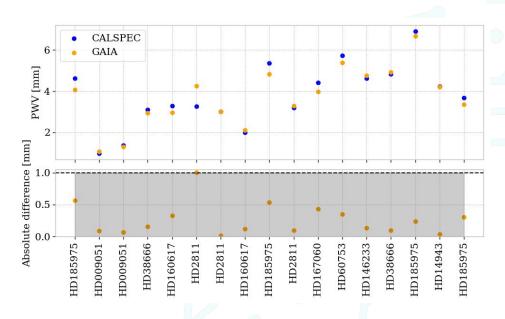
Ongoing: Normalize spot flux depending on exptime

→ In collaboration with Harvard student


Ghosts simulation with Batoid

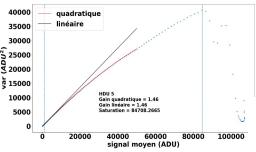
Goal: use Ghosts positions for photometry + Rubin-CBP alignment

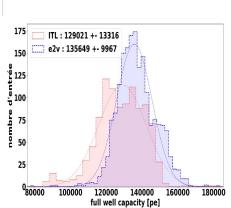
Photometry (Sylvie)

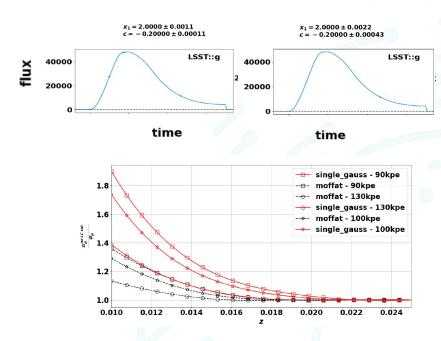


AuxTel standards (Philippe+Nicoleta+Corentin)

- Standard spectra used in AuxTel from CALSPEC and no coverage of the full LSST sky, nor the DDF.
- First test: using GAIA spectra as standards in the spectroscopic extraction of AuxTel and comparison with CALSPEC
- Conclusive feasibility study, still a lot of work on GAIA catalog and spectra
- See presentation in AuxTel parallel


Precipitable water vapor measurement by AuxTel with CALSPEC and GAIA spectra




Ccd saturation and SNe Ia (Julie+Philippe)

- ccd saturation -> impact on low-z (z≤0.05) SNe Ia
- Estimate gain/ccd full well using run5

 $Flux = flux[pe/seconde] \times temps de pose \times f(seeing)$

