Search for dark matter halos in the Milky Way with stellar streams detected by the Rubin/LSST observatory

Matthieu Pélissier (M2) Supervised by Marine Kuna

LSST France - June 2024

I. Context : Dark matter

 Highlighted by cosmological probes

Nature ?

• Direct detection has not been successful yet

($10^6 - 10^9 M_{\odot}$) to constrain dark matter models

I. Context : stellar streams

II. Context : LSST & DESC

LSST advantage for stellar streams ?

- Gaia magnitude limit 20 vs 27.5 for LSST
- Number of stars detected: 10^{10}

Possible new streams and stars detected

Dark Energy Science Collaboration (DESC)

- Stellar streams project leader : Marine Kuna
- **Team members experts** in streams detection from photometric surveys (DES) : close collaborators Alex Drlica-Wagner, Peter Ferguson & Nora Shipp (DKM group conveners)

II. Objective

Building **observables sensitive** to the **perturbations** imprinted by dark matter **subhalos** on **stellar streams**

(Erkal 2017)

III. Simulations

- Evolution of stars in the fixed potential of the Milky Way (<u>Bovy 2016</u>) galaxy
- Free parameters used: number of stars, number of impacts by halos of selected masses, impact time

Stars coordinates of the stellar streams

+ addition of background noise to simulate the presence of background stars and galaxies

IV. Observables

1) Power spectrum P(k)

Polynomial fit

• Sensitive to characteristic sizes and disturbance frequency

IV. Observables

2) Two points correlation function $\xi(r)$

Combining observables from several stellar streams

V. Preliminary results

1) Sensitivity study based on <u>encounter masses</u>

V. Preliminary results

2) Sensitivity study based on <u>number of impacts</u>

VI. Conclusions

Internship

- **Simulation** on the Lyon computing centre
- Construction and interpretation of **observables**
- Sensitivity testing to different sub-halo populations

Work in progress

- How to limit **edge effects**
- The response of observables to the **full mass distribution of halos** (power law)
- The influence of **free parameters**, such as impact time

VII. Outlooks

Axis 1: LSST data analysis

- Continuation of the internship: sensitivity of observables, other methods
- Testing the impact of survey non-uniformity

Axis 2 : Stellar streams modelling

N-body simulation: Accurate subhalos population Baryonic effects (Milky Way arms, globular clusters)

╋

StreamSim :

Develop collaborative code with stellar streams experts (Alex Drlica-Wagner, Peter Ferguson, Nora Shipp)

Axis 3 : Stellar streams detection

Injection into a precursor data catalogue

Find injection with **DES algorithm adaptation** on a colour-magnitude

VII. Outlooks

VIII. Summary

- Internship

Demonstrating the **discriminatory** potential of currents on dark matter halo populations

Outlooks

Preparing to **observe** stellar streams with the **first LSST data** and their **constraints** on dark matter models

Vera C. Rubin Observatory

V. Appendix

Sommaire

- Stages de L3, M1
- <u>Détection avec Match Filter</u>
- Diagrammes H-R
- <u>Estimation Fonction de corrélation à deux points</u>
- <u>Modèles de matière noire</u>
- <u>Contraintes sur la matière noire</u>
- Formation des courants stellaires
- Formation des gaps
- Comparaison GAIA LSST
- <u>Déroulement de la thèse</u>

Stage L3

Analyse vectorielle

Formules analytique de l'angle de polarisation

Caractéristique de polarisation du disque d'accrétion d'un trou noir dans la métrique de schwarzschild

Stage M1

Détection courants stellaires

H-R diagrams

Estimation fonction de corrélation à deux points

Matière noire

• Évidences matière noire

(<u>Kent 1986</u>)

(<u>Vegetti 2010</u>)

• Population de sous halos pour différents modèles

(Snowmass 2021)

Contraintes DM

En bleu : posterior en utilisant GD1 En orange : posterior en comptant les sattelites

Warm dark matter

Formation des streams

Trailing arm

outer Lagrange point - higher energy - longer orbital period than the progenitor : they fall behind

Leading arm / inner Lagrange point - lower energy - shorter orbital period than the progenitor : they move ahead

(@Belokurov)

Formation des gaps

Comparaison GAIA

Pour la r-band, supposant r = G, où G est la bande large de Gaia

	Magnitude maximale	Nombre d'étoiles détectées
LSST	24.5 (1 exposition), 27.5 (10 ans)	10 ¹⁰
GAIA	20	10 ⁹
(LSST Science Collaborations 2009)		

mas/yr = milli-second of arc per year

Déroulement thèse

II. Framework

2) **Observables** : probabilities ratio

$$\frac{P_d(r)}{P_r(r)} = \frac{DD \times RR.tot}{DD.tot \times RR}$$

- Uses information in **2 dimensions**
- Estimated using *treecorr* library by counting star pairs

• Only positive part — easier to read

I - Framework

Only to calculate P(k) of linear density <u>Spline</u> –

