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➔ Goal: propose a set of  cohesive Deep Drilling strategies fulfilling reqs from: 
◆ cosmology measurements (photo-z, Weak Lensing, type Ia supernovae) 
◆ the Survey Cadence Optimization Committee (SCOC) phase 2 guidelines 

(jan 2023)
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A cohesive Deep Drilling Field Strategy for LSST Cosmology

● Outline
○ Deep Drilling Fields (DDF) and LSST observing strategy
○ Design requirements

■ SCOC phase 2 recommendations
■ Requirements from cosmological measurements

○ Metrics to assess observing strategies
○ Designing a cohesive DDF strategy
○ Assessment of  the proposed DESC cohesive DDF strategies
○ Conclusion

3



LSST Observing Strategy

2 types of  surveys:
● Main survey: Wide-Fast-Deep (WFD)

● Mini-surveys:
○ Deep-Drilling Fields (DD)
○ South celestial pole
○ North Ecliptic
○ Galactic Plane

Main survey: ~ 85% of  Nvisits
DD : ~5-10% of  Nvisits



Observing Strategy status (LSST)

● Survey Cadence Optimization Committee (SCOC)
○ Final recommendations to Rubin Observatory’s Director of  Operations in fall 2024 (yes, this year!)
○ OS revised every year
○ DESC liaisons: R. Mandelbaum, S. Jha, S. Smart
○ Phase 2 recommendations: https://pstn-055.lsst.io (jan 2023)

● Main projects for this year:
○ Nstrips for rolling cadence (WFD)
○ cadence for Deep Drilling Fields (DDF)
○ early science plan
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SCOC phase 2 recommendations for DDFs

● 5-7% of  survey time to be spent on DDFs
○ > 5% should be well justified (WFD perf.)

● 5  DDFs observed for ten years
● COSMOS prioritized with additional survey time

○ 10-year DDF depth in three years (beginning 
of  the survey)

○ Same cadence as other fields the remaining 
time

● Euclid Deep Field South (EDFS) as 5th field
○ ~ twice as large as the other DDFs
○ observed at half-depth over its full area

6

COSMOS
XMM-LSS

CDFS

ELAIS-S1
EUCLID

DDFs are critical for DESC: PZ, WL (calibration), SNe Ia (cosmology)

Critical parameters tbd: cadence of  observation, filter allocation



Requirements/metrics from calibration - photo-z (PZ)

● PZ estimated from SED of  distant galaxies (6 bands)
● type/redshift degeneracy -> uncertainty in PZ calibration
● To break degeneracies

○ Wide-field, multi-band measurements with accurate redshift galaxies
○ Multi-band deep-fields: precise photometry (flux), reduction of  sample variance, shot noise and 

selection effects
● Requirement

○ coadded DDFs overlap with deep spectroscopic redshift surveys (VVDS, C3R2, COSMOS2020)
○ LSST: 5-σ depth (m5)
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Requirements (per band)



Requirements/metrics from calibration - weak lensing (WL)

● Two primary uses of  DDFs:
○ calibration of  weak lensing shape estimators: DDF overlapping with high-resolution space-based 

imaging
○ calibration of  weak lensing shear estimators: reducing the loss of  precision in the statistical shear 

measurement from 20% to 5% using the DEEP-FIELD METACALIBRATION technique (pixel 
noise reduction)

● Requirements (per band)
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Metric for WL reqs.



Requirements/metrics from cosmology - Type Ia Supernovae (SNe Ia)
● SNe Ia collected by LSST                            cosmological measurements : Hubble Diagram (HD)
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SN Requirements

Observe a large sample of  
well-measured SNe Ia 
up to high redshift completeness

Observing Strategy Constraints

● Nvisits/band/night (LC SNR)
● cadence of  observation (LC sampling+SNR)
● season length/number of  seasons (NSN)
● number of  fields (NSN)
● time budget

SNe Ia light curve
parameters

Rubin-LSST
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SN Requirements

Observe a large sample of  
well-measured SNe Ia 
up to high redshift completeness

Observing Strategy Constraints

● Nvisits/band/night (LC SNR)
● cadence of  observation (LC sampling+SNR)
● season length/number of  seasons (NSN)
● number of  fields (NSN)
● time budget

SNe Ia light curve
parameters

Redshift

● Spectro
● Photo-z 
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Requirements/metrics from cosmology - Type Ia Supernovae (SNe Ia)

➢ measuring (w0, wa) -> large SNe Ia sample at high z (necessary condition) -> DDF!
➢ requirement: SNe Ia sample with high redshift completeness (faint SNe Ia)

○ large number of  visit per observing night
○ high cadence of  observation (1 night)
○ optimized filter allocation
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Requirements/metrics from cosmology - Type Ia Supernovae (SNe Ia)

❖ Supernovae Metric of  Merit (SMoM): metric to assess OS for SN cosmology
○ Global metric : WFD+DDF (better than NSN and zcomplete used up to now) 
○ SMoM definition: based on the DETF FoM (see this article)
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+ spectroscopic scenario for host galaxy redshift.

https://arxiv.org/pdf/astro-ph/0609591.pdf
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Precise cosmology with SNe Ia = highest SMoM
+ spectroscopic scenario for host galaxy redshift.

https://arxiv.org/pdf/astro-ph/0609591.pdf


Designing a cohesive DESC DDF strategy 

● Requirements: PZ, WL, SNe Ia + SCOC phase 2
● SNe Ia

● High budget per season (1.3% for zcomplete~0.8)
● DDF budget for universal cadence: 1.3*50=65% !!!!

● To maximize the number of  SNe Ia at higher-z: 2 types of  fields
○ ultra-deep fields

■ zcomplete~0.7-0.8
■ high cadence of  observation/>100 visits/obs. night
■ limited number of  seasons (deep fields otherwise)

○ deep fields
■ zcomplete~ 0.5-0.6
■ Cadence ~ 3-4 nights/< 40 visits/obs. Night
■ 10 seasons
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Deep Rolling survey



Designing a DESC cohesive DDF strategy - free parameters
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Free parameters
- number of  UD fields
- number of  UD season
- number of  UD visits/obs. Night
- number of  DF visits/season



Designing a DESC cohesive DDF strategy 
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Designing a DESC cohesive DDF strategy 
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SNe Ia requirements ± 0.01 

WL_PZ y2_y10 requirements ±0.05 mag



Designing a DESC cohesive DDF strategy 
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➔ 12 scenarios
◆ 3 optimal for SN (_SN)
◆ 3 optimal for PZ+WL (_WZ)
◆ 3 compromise SN-WL+PZ (_co)
◆ SCOC_p2
◆ Universal_WZ
◆ Universal_SN



Designing a DESC cohesive DDF strategy 
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➔ 12 scenarios
◆ 3 optimal for SN (_SN)
◆ 3 optimal for PZ+WL (_WZ)
◆ 3 compromise SN-WL+PZ (_co)
◆ SCOC_p2
◆ Universal_WZ
◆ Universal_SN

Impossible to fulfill PZ, WL, and 
SNe Ia reqs with a budget of  7%.

-> budget required: ~ 8.5%



Example of  a Deep Rolling strategy
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● Filter allocation from SNe 
Ia reqs (UD fields) and 
from calibration reqs 
(PZ,WL)

● Moon: 
○ phase < 20%: u <-> 

y swap



DD budget vs season
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Metric: PZ
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Metric: WL
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Metric: SNe Ia
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NSN (z≥ 0.8)
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Combining metric results
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Strategies not meeting PZ or WL reqs SNe Ia SMoM
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Combining metric results
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Strategies not meeting PZ or WL reqs SNe Ia SMoM

WL reqs ok with budget+0.05%

Δm5 ~ -0.3-0.4 acceptable?



Conclusion
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● Seems possible to design DDF strategies fulfilling PZ, WL calibration reqs, optimal for SNe Ia 
cosmology, and following the SCOC phase 2 recomm.

● A method used to define the strategy parameters (cadence, Nv, filter allocation) presented in this paper
● Most promising: Deep Rolling surveys

○ 2 Ultra-deep fields (high cadence, large Nv) - limited number of  seasons (2-4)
○ Deep fields (lower cadence, lower Nv) for 10 seasons

● A DDF budget of  ~8.5% is required for all cosmological measurement reqs. to be fulfilled
● Critical to observe SNe Ia leading to accurate distance measurements
● Results presented in this paper were achieved with a (relatively) basic simulation. A validation with 

realistic simulations using the LSST scheduler is required.


