Weak lensing and HOS 00000 Construction of the lightcones

Tests 000000 Conclusions

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Cosmic Shear Simulations for Higher-Order Statistics

Juan Mena-Fernández¹

On behalf of the HOS topical team of DESC

¹Laboratoire de Physique Subatomique et de Cosmologie (LPSC)

Wednesday 12th June, 2024

Weak lensing and HOS		

1. Weak lensing and HOS

- 2. Construction of the lightcones
- 3. Tests
- 4. Conclusions

Construction of the lightcones

Tests

Weak gravitational lensing

Weak gravitational lensing **distorts the images of background objects** due to the presence of a foreground matter distribution.

Credits: NASA/ESA

Three lensing regimes:

- Cluster lensing. The foreground object is a cluster. Distortions of ${\sim}10\%.$
- Galaxy-galaxy lensing. The foreground object is a galaxy. Distortions of ~1%.
- Cosmic shear. Caused by large-scale structure (LSS). Distortions of ~0.1-1%.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Cosmic shear is traditionally analyzed using two-point functions...

Weak lensing and HOS		

Why higher-order statistics?

Two-point functions do not give us information about non-Gaussian features.

Phase-shifted map

Different structures but same C_{ℓ} !

・ロト・西ト・山田・山田・山口・

Weak lensing and HOS		
	-	

Why higher-order statistics?

2 Two-point functions + HOS = better constraints on cosmological parameters.

Credits: Euclid preparation XXVIII - A&A 675, A120 (2023)

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Weak lensing and HOS	Construction of the lightcones	Tests 0000000	Conclusions 000

Motivation and context

- HOS are a powerful tool for cosmology.
- However, they usually lack theoretical predictions.
- Therefore, we rely on simulations, which are computationally expensive.
- When generating simulations, we need to **optimize their accuracy vs computing** resources (charged node hours + storage) as a function of
 - volume.
 - mass resolution (mass/particle).
 - number of redshift snapshots.

Goal: optimize the generation of upcoming lensing and clustering simulations needed for the analysis of LSST Y1 data with HOS.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

DESC project: [282] Simulations for Higher-Order-Statistics https://portal.lsstdesc.org/DESCPub/app/PB/show_project?pid=282

Weak lensing and HOS	Construction of the lightcones	Tests 0000000	Conclusions 000

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Outline

1. Weak lensing and HOS

2. Construction of the lightcones

3. Tests

4. Conclusions

Weak lensing and HOS	Construction of the lightcones	Tests	Conclusions
00000		0000000	000

HACC simulations

We construct our lightcones from **N-body dark matter (DM) box simulations** produced with the Hybrid Accelerated Cosmology Code (HACC).

- Boxes are evolved from redshift 200 to 0.
- A total of 101 snapshots are stored, from redshift 4 to 0 (linear spacing in a).

By default:

- Number of DM particles: $N_p = 2048^3$.
- Length of the box: L = 600 Mpc/h.

Credits: V. Springel - MPA-Garching Data Visualization

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Weak lensing and HOS

Construction of the lightcones

Tests 0000000

▲□▶▲□▶▲≡▶▲≡▶ ≡ めぬぐ

Conclusions

From HACC to lightcones

Credits: R. Booth (2024)

 \uparrow # snapshots \leftrightarrow \uparrow info about z evolution \checkmark \leftrightarrow \uparrow expensive and \uparrow storage \land

Weak lensing and HOS Construction of the lightcones		Tests 0000000	Conclusions 000			
D .	1.1	CI.				

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Code: pollux (https://github.com/LSSTDESC/pollux.git)

¹We can measure HOS from these

Tests 0000000 Conclusions

Example: δ and κ maps

Example: κ map.

<ロト <回ト < 注ト < 注ト

э

Construction of the lightcones

Tests 0000000 Conclusions

Example: $\overline{\mathcal{C}_\ell}$ of the δ maps

▲□▶ ▲□▶ ▲臣▶ ★臣▶ = 臣 = のへで

- 1. Weak lensing and HOS
- 2. Construction of the lightcones

3. Tests

4. Conclusions

- 1. Weak lensing and HOS
- 2. Construction of the lightcones

3. Tests

3.1 Downsampling at high z

- 3.2 Number of snapshots
- 4. Conclusions

Test 1: downsampling at high z

- Using all DM particles is computationally expensive, especially at high z.
- We downsample fixing the projected number density from $z = \text{densitymax}_z$.
- Three cases tested: densitymax_ $z = \{1.5, 0.8, 0.5\}$.

But... how does this impact our measurements?

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへの

Weak lensing and HOS

Construction of the lightcone

Tests

Test 1: downsampling at high z

• Three cases tested: densitymax_ $z = \{1.5, 0.8, 0.5\}$.

~ ~ ~ ~

Outline

- 1. Weak lensing and HOS
- 2. Construction of the lightcones

3. Tests

- 3.1 Downsampling at high z
- 3.2 Number of snapshots

4. Conclusions

Construction of the lightcones

Tests ○○○○○●○

Test 2: number of snapshots

• We construct the lightcones using 101 (all), 51, 34 and 26 snapshots.

200

æ

Construction of the lightcones

Tests 000000

Test 2: number of snapshots

• We construct the lightcones using 101 (all), 51, 34 and 26 snapshots.

200

э

Weak lensing and HOS	Construction of the lightcones	Tests 0000000	Conclusions

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

- 1. Weak lensing and HOS
- 2. Construction of the lightcones
- 3. Tests
- 4. Conclusions

Conclusions

Goal: optimize the generation of upcoming lensing and clustering simulations needed for the analysis of LSST Y1 data with HOS.

- Tests
 - downsampling at high z: we set densitymax_z = 1.5 as our default.
 - number of shells.
- Related ongoing and upcoming projects:
 - development of pollux (C. Doux).
 - halo-occupation distribution (HOD) models (A. Halder).
 - baryonification of the dark matter shells (A. Vera).
 - systematic effects (A. Nicola).
- Next steps:
 - validate the mock catalogs (J. Harnois-Deraps).
 - measure different HOS (J. Armijo).
 - vary the volume and mass resolution (K. Heitmann).
- Example notebook to load the data:

https://github.com/LSSTDESC/pollux/blob/main/pollux_io_tutorial.ipynb

Weak lensing and HOS 00000 Construction of the lightcones

Tests 0000000

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Conclusions

Thank You!