

SEARCH FOR ORPHAN GAMMA-RAY BURST AFTERGLOWS IN RUBIN LSST DATA WITH THE ALERT BROKER FINK

Journées LSST France -

MARINA MASSON JOHAN BREGEON

10-12 June 2024

BRIEF OVERVIEW

- 1- Scientific context
- 2- Simulation of a population of GRBs and their "pseudo-observations"
- 3- Characterising "pseudo-observed" light curves
- 4- Creation of a first version of a filter
- 5- Conclusions & perspectives

GENERAL CONTEXT

THE ORPHAN AFTERGLOW: A GRB VIEWED OFF-AXIS

GRB (prompt emission) = short and highly energetic (~ 10⁵¹ erg) gamma-ray flashes (observed with Fermi or Swift in keV – GeV)

Afterglow = long-lasting and fading emission following the gamma prompt emission

Orphan afterglow = afterglow observed off-axis (without gamma-ray emission)
 ⇒ No orphan afterglow detected so far! (Some candidates but none confirmed)

GENERAL CONTEXT MOTIVATIONS

Goal = To implement a filter in FINK to identify orphan afterglows in the Rubin LSST data

Why study orphan afterglows?

- More information on the **GRB physics and their progenitors** (acceleration of particles, jet formation and structure...)
- **Multi-messenger analysis with gravitational waves:** separate measure of the distance and the redshift to calculate the Hubble constant H0

$$d_L(z) = \frac{cz}{H_0}$$

SIMULATION OF A POPULATION OF GRBS

Identification of orphans based on their light curve

https://github.com/geoffryan/afterglowpy

SIMULATION OF A POPULATION OF GRBS MODEL OF GRB AFTERGLOW EMISSION

Identification of orphans based on their light curve

Forward shock model + electron synchrotron model (Van Eerten et al. 2010)

Studied parameters:

- Energy E₀
- Circumburst medium density n₀
- Redshift z
- Observer angle θ_{obs}
- Jet type (uniform or **structured**)
 - Core angle θ_{c}
 - Truncature angle θ_{w}

SIMULATION OF A POPULATION OF GRBS

Identification of orphans based on their light curve

Forward shock model + electron synchrotron model (Van Eerten et al. 2010)

Studied parameters:

- Energy E₀
- Circumburst medium density n₀
- Redshift z
- Observer angle θ_{obs}
- Jet type (uniform or **structured**)
 - Core angle θ_c
 - Truncature angle θ_w

⇒ Need some parameters distributions!

SIMULATION OF A POPULATION OF GRBS POPULATION OF GRBS BASED ON SBAT4 AND BAT6 CATALOGUES

Goal: To simulate somewhat realistic distributions for GRBs

SBAT4 catalogue (D'Avanzo et al. 2014) = selected sample of **short** GRBs observed by the Swift satellite up to June 2013

- Detected in the **15-150 keV energy band**
- Selection criteria: peak flux **PF**₆₄ > **3.5 ph/s/cm**²

SIMULATION OF A POPULATION OF GRBS POPULATION OF GRBS BASED ON SBAT4 AND BAT6 CATALOGUES

Goal: To simulate somewhat realistic distributions for GRBs

2000

1750

1500 88 1250 -

1000 · 10000 · 1000 · 1000 · 1000 · 1000 · 1000 · 1000 · 1000 · 1000 · 1

500

250

0.0

2.5

5.0

 θ_c

of

SBAT4 catalogue (D'Avanzo et al. 2014) = selected sample of short GRBs observed by the Swift satellite up to June 2013

Detected in the 15-150 keV energy band ٠

GRBs with $F_{BAT} > 3.5 \text{ ph/s/cm}^2$

48

50

52

ENERGY E_{iso} (log)

all GRBS

4000

3500

3000

2500

500

0

38

40

42

44

46

 $log_{10}(E_{iso})$

of GRBs

Selection criteria: peak flux $PF_{64} > 3.5 \text{ ph/s/cm}^2$

Generate configurations of parameters:

SIMULATION OF A POPULATION OF GRBS POPULATION OF GRBS BASED ON SBAT4 AND BAT6 CATALOGUES

* Fermi GBM minimal detection flux

SIMULATION OF A POPULATION OF GRBS POPULATION OF GRBS BASED ON THE SBAT4 AND BAT6 CATALOGUES

rubin_sim package \Rightarrow Realisation of the scheduler simulation for the 10 years of LSST (<u>https://github.com/lsst/rubin_sim</u>)

GRB date: 12 March, 2030

GRB (RA, Dec) coordinates: (19h00m55.04s, -53d23m42.38s)

Parameters:

- Power-Law jet
- $E_{iso} = 1.3 \times 10^{52} \text{ erg}$
- $\theta_{obs} = 21.2^{\circ}$
- $\theta_c = 2.9^\circ$
- $\theta_w = 8.6^\circ$
- $n_0 = 0.45 \text{ cm}^{-3}$
- z = 0.001

⇒ Fraction of "pseudo-observable" orphans by the Rubin Observatory: ~4 %

PSEUDO-OBSERVATION ANALYSIS CHARACTERISATION OF LIGHT CURVES

Defined features:

- Duration between the first detection and the peak
- Increase rate of the magnitude
- Decrease rates of the magnitude in the 1st third and the last third of the light curve
- g-r colour (expected value for synchrotron emission ~ 0.3)

PSEUDO-OBSERVATION ANALYSIS CHARACTERISATION OF LIGHT CURVES

Defined features:

- Duration between the first detection and the peak
- Increase rate of the magnitude
- Decrease rates of the magnitude in the 1st third and the last third of the light curve
- g-r colour (expected value for synchrotron emission ~ 0.3)

PSEUDO-OBSERVATION ANALYSIS CHARACTERISATION OF LIGHT CURVES

Defined features:

- Duration between the first detection and the peak
- Increase rate of the magnitude
- Decrease rates of the magnitude in the 1st third and the last third of the light curve
- **g-r colour** (expected value for synchrotron emission ~ 0.3)

CHARACTERISATION OF ORPHAN LIGHT CURVES RESCALING DATA TO THE R-BAND

Fit data with a function with free parameters (Russeil et al. (arXiv:2402.04298)):

 $mag(t) = A \times t + B + C \times exp(-D \times t)$

Points are rescaled to be on the r-band

Sari & Piran 1998

CHARACTERISATION OF ORPHAN LIGHT CURVES RESCALING DATA TO THE R-BAND

 ν_c decreases with time \Rightarrow we don't know which value of β we have to use

CHARACTERISATION OF ORPHAN LIGHT CURVES RESCALING DATA TO THE R-BAND

$$F_{\nu} \propto \nu^{-\beta}$$

meta spectral index <

 β = -p/2 when $\nu_c < \nu$

 β = -(p-1)/2 when $\nu_m < \nu < \nu_c$

 ν_c decreases with time \Rightarrow we don't know which value of β we have to use

Sari & Piran 1998

What we do:

1. Test several values of β between -(p-1)/2 and -p/2

2. Keep the one that minimize the distance between the re-scaled points and the true r-band points

CHARACTERISATION OF ORPHAN LIGHT CURVES RESCALING DATA TO THE R-BAND

Fit data with a function with free parameters (Russeil et al. (arXiv:2402.04298)):

$$mag(t) = A \times t + B + C \times \exp(-D \times t)$$

Points are rescaled to be on the r-band

All features used to characterize one event:											
(t _{peak} -	t _o)	Increase rate	Decrease rate (1/3)	Decrease rate (3/3)	Colour	А	В	С	D	X²	
										-	11/1

FIRST VERSION OF A FILTER USING ELASTICC DATA AS A BACKGROUND

https://portal.nersc.gov/cfs/lsst /DESC_TD_PUBLIC/ELASTICC/

ELASTICC = DESC simulation of LSST alerts (Extended LSST Astronomical Time-Series Classification Challenge)

Synthetic transient light curves and host galaxies for:

- Supernovae
- Active galactic nuclei
- Tidal disruption events
- Kilonovae
- M-dwarf flares
- Cepheid variables
- ...
- But no orphans!

 \Rightarrow Create a realistic data stream to test broker alert systems and classifiers

FIRST VERSION OF A FILTER FIRST TEST OF A MACHINE LEARNING ALGORITHM

(only non-periodic events)

FIRST VERSION OF A FILTER FIRST TEST OF A MACHINE LEARNING ALGORITHM

(only non-periodic events)

FIRST VERSION OF A FILTER FIRST TEST OF A MACHINE LEARNING ALGORITHM

Marina Masson | Journées LSST France | June, 2024

CONCLUSION & PERSPECTIVES

GOAL Implement a filter in FINK to identify orphan GRBs among Rubin LSST data

CONCLUSION

Simulation of a population of GRBs based on Swift BAT catalogues

Characterise "pseudo-observed" light curve of orphan GRBs

Create ML filter to discriminate orphan among LSST data

CONCLUSION & PERSPECTIVES

GOAL Implement a filter in FINK to identify orphan GRBs among Rubin LSST data

CONCLUSION

Simulation of a population of GRBs based on Swift BAT catalogues

Characterise "pseudo-observed" light curve of orphan GRBs

Create ML filter to discriminate orphan among LSST data

NEXT STEPS

- Adapt our filter and test it on ZTF data
- Discussion with IJCLab on GW-orphan joint detection

THANK YOU FOR YOUR ATTENTION!

BACKUP SLIDES

MORE DETAILS ON THE CLASSIFIER

CLASSIFICATION OF THE ELASTICC EVENTS

LOOKING INTO ZTF DATA

skysurvey package \Rightarrow Simulate astronomical targets as they would be observed by a survey (<u>https://github.com/MickaelRigault/skysurvey</u>)

Survey	Nightly limiting magnitude (r-band)	Filters	FOV (deg²)	Cadence
LSST	24.5	u, g, r, i, z, y	9.6	3-night
ZTF	20.5	g, r, i	47	2-night

GRAVITATIONAL WAVE COUNTERPART

- Specific analysis needed because we have a precise position but large uncertainties on T₀ for orphans
- GWTC-3 catalogue all-sky triggers: given a position, look for synchronised GW signals
- How the size of the time window for the PyCBC coherent analysis impacts the number of detected events?

HOST EXTINCTION

Host extinction more important for long GRBs than for short GRBs

Marina Masson | Journées LSST France | June, 2024

SUPERNOVA OVERLAP

Collaboration with the Osservatorio Astronomico di Brera, Italy

KILONOVA OVERLAP

Collaboration with the Osservatorio Astronomico di Brera, Italy

