DC2 stellar masks LSST France – CPPM Marseille

Nathan Amouroux – PhD Student at LAPP, Annecy Supervised by Thibault Guillemin

12/06/2024

The bright stars issue **Optical point of view**

Bright stars reduce image quality by introducing optical/electronical effects such as:

Satellite/plane trails

>Diffraction spikes

- ➢Ghosts
- ➢Crosstalk

≻Etc…

Can introduce systematics in galaxy identification, photometry, shear measurement \rightarrow Concerns different working groups

Example of a saturated star and its mask in HSC-SSP

The bright stars issue DC2 object catalog point of view

Issues:

- Misclassification of objects
- Holes in galaxies' footprint : no detection
- Artifacts might be present near those holes : fake/bad detections
 - \rightarrow May induce biases in science results

Part of DC2 tract 3830

First DC2 masks in DESC Zilong Du's approach

- •Context : LSS analysis
- •Method based on HSC-SSP survey article [1] : adapted and described in [2]
- •Masks cover ~10% of DC2 area
- Low resolution
- •No code avaible to change parametters

 \rightarrow We want to build our own

•We don't expect masks to cover all visible holes : cosmoDC2 has inhomogeneities too

Building our samples **Bright objects sample : stars**

Star classification :

- extendedness estimated with mag_{PSF} mag_{cModel}
- DC2 \rightarrow No estimation of PSF for brightest stars
- magnitude = nan when magnitude is "ill defined"

 \Rightarrow Issue : in this region we don't know who are true stars and what is their magnitude \rightarrow In HSC they use external catalogs such as Tycho-2 \rightarrow In LSST we will have **monster catalog** = Gaia catalog

adapted to LSST

No more star at mag_i_cModel ≤ 16 Harsh drop

\rightarrow In DC2 we use truth quantities

Building our samples Bright objects sample : galaxies

- Largest holes in DC2 footprint caused by bright galaxies.
- Bright galaxy classification : igodot
 - Appear to be less chaotic than bright stars
 - Still has impurities
 - We won't have external bright galaxies catalog
- Bright galaxies may be indicators to the presence of a cluster ulletWe have to be careful when using this sample for masks!

Building our samples We want the brightest objects

Galaxies :

- Keep selection efficiency > 95% \rightarrow mag_i cModel \in [17,25.3] - Using DC2 quality flag 'clean' : object has no flagged pixels
- extendedness = 1

Bright objects :

- Truth type = 2 for stars, 1 for galaxies
- bins of mag_i truth = [<10, 10, 11, 12, 13, 14, 15, 16]

Determine critical radius Density ratio

Now : we need to know what disk radius should be used as circular mask radius around bright stars :

1) Divide bright stars by mag_i bins

2) Compute object density for each stars in bins of radius

3) Normalize with full survey density

Critical radius with full sample **Density ratio profiles**

Brightest stars : $\theta_c \sim 50$ "

Mask map creation

Then :

1) Create empty high resolution healsparse map (Nside = 131,072) 3) Remove all Galaxy sample objects contained in those pixels

- 2) Remove all pixels whose center lie within the disk around each bright star

DESC DC2 bright star masks project

- Project in <u>Science Release and Validation</u> WG
- \succ WGs have different needs for masks (quality cuts, resolution, ...)
- > Masks need to be studied
- \succ We want them to be customizable.

→ <u>DC2_stellar_masks</u> package				
DC2_stellar_masks Public			🖍 Edit Pins	▼ ● Watch 5
우 main 👻 우 Branch 🛇 O Tags		Q Go to file	t +	<> Code -
NathanAmouroux rm untitled.ipynb in root dir	ectory		0f541c0 · last week	🕓 10 Commits
Examples	huge release afte	r black and multiproce	ssing impleme	last week
bright_objects_masks	huge release afte	r black and multiproce	ssing impleme	last week
Config	huge release afte	r black and multiproce	ssing impleme	last week
README.md	Update README.	md		last week

DESC DC2 bright star masks project How it works

Nathan Amouroux – LSST France meeting

12

DESC DC2 bright star masks

- Dark regions are masked pixels ullet
- High resolution (~ 0.45") ullet
- Masked surface ~ 2% ightarrow
- Bright stars do not cover every hole ightarrow
- There are bright galaxies too ullet

DESC DC2 bright star masks

- Dark regions are masked pixels
- High resolution (~ 0.45")
- Masked surface ~ 2%
- Bright stars do not cover every hole
- There are bright galaxies too

Bright objects vs Images patch of tract = 3830

Not the best comparison but you can still see stars

 CAPP
 Nathan Amouroux – LSST France meeting

Impact of masks on cluster finder AMICO

>Masks are downgraded : masked pixels have weights \rightarrow AMICO corrects richness for masked fraction

► Clusters near masks :

- Higher apparent richness
- Higher miscentering

>Impact on completeness and purity ?

Conclusion and perspectives

- Bright object masks will be crucial for various WGs ightarrow
- and « easily » customizable)
- Brightest stars were selected to produce the masks ullet
- First masks being studied in AMICO validation project \bullet

First stable release of the package is now available here (mask production is now very

06/2024

17

Conclusion and perspectives

- Bright object masks will be crucial for various WGs
- First stable release of the package is now available <u>here</u> (mask production is now very and « easily » customizable)
- Brightest stars were selected to produce the masks
- First masks being studied in AMICO validation project
- Bright galaxies sample to study for masks
- Study the impact of Nside (pixel resolution)
- Validation of masks in different WGs

17

.....

Thanks for your attention

