

Analysis of the CCOB-NB Run6 data

Camera Calibration Optical Bench – Narrow Beam

J. Bregeon

- Commissioning of the integrated camera (LCA-283-F)
 - precise measurement of the **optical throughput**
 - determination of the optics alignment/tilt
 - mapping of the **baffle** between L1 and L2
- The Camera Calibration Optical Bench Narrow Beam (CCOB-NB) is a calibrated and $(X,Y)+(\Theta, \Phi)$ positionable pencil beam monochromatic light source.
 - allows the illumination of the focal plane through the full optical system from a variety of incident angles in the 6 spectral bands
 - 2.5 mm wide monochromatic beam ($\delta\lambda\sim$ 1 nm)
 - from 300 nm to 1100 nm

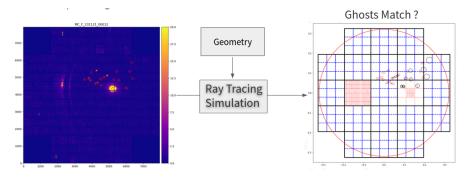
In-operation picture

Designed and built at LPSC, used at SLAC for Run 6 in 2023



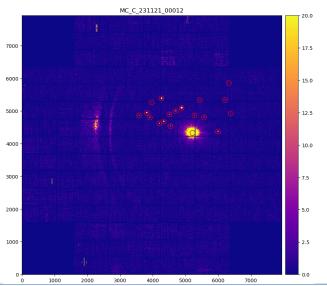
In-operation picture

Designed and built at LPSC, used at SLAC for Run 6 in 2023



Main idea

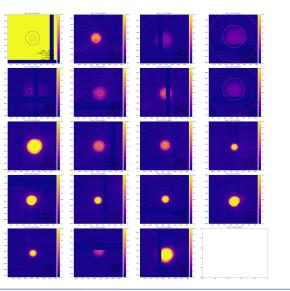
- Run6 data taken in november 2024 in 27 different configurations
- Ray tracing simulation package based on batoid



Full focal plane image with ghosts

Rubin

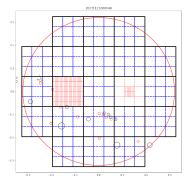
Observatory

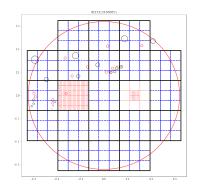

- Run the ISR on each CCD, relying on eo_pipe
- Make a mosaic image : assembling CCDs into one focal plane image
- Point and click on each ghosts
- Fit each ghost position with a 2D gaussian to get a precise position (and a rough flux estimation)
- Coordinate transform to get the CCD in which each ghost is
- Fit each ghost position again on the post–ISR CCD images: to get a correct coordinate transform to absolute focal plane position (a.k.a DVCS)

Ghosts fits

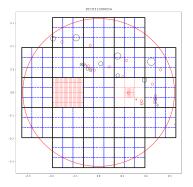
Rubin Observatory

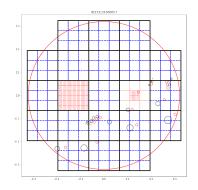
Ghosts fits





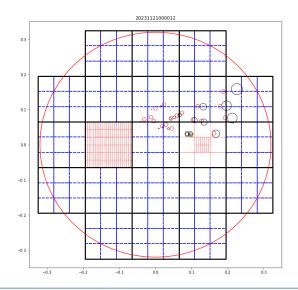
Match data and simulations





Rubin Observatory

Match data and simulations



Rubin Observatory

Match data and simulations

ghost spot $g_{r,i}$ has parameters $[x_{r,i}, dx_{r,i}, y_{r,i}, dy_{r,i}, rad_{r,i}, drad_{r,i}, p_{r,i}]$ for position in x and y with uncertainties dx and dy, radius rad and uncertainty drad and intensity.

the 2D Euclidean distance between 2 ghosts spots is defined as:

$$d(g_{r,j},g_{s,i}) = \sqrt{(x_{s,i}-x_{r,j})^2 + (y_{s,j}-y_{r,j})^2}$$

and the associated error is:

$$\sigma_d(g_{r,j},g_{s,i}) = \sqrt{(dx_{s,i}^2 + dy_{s,i}^2) + (dx_{r,j}^2 + dy_{r,j}^2)}$$

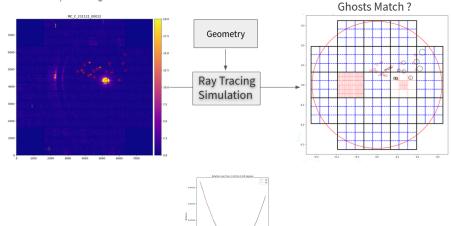
with the distances spot to spot between the 2 lists $(g_{r,j1..m}, g_{s,i1..n})$, one can them associate each spot in the S_s set with the closest spot in the S_r set.

we note g_{r,k_i} the closest ghost spot in S_r to the ghost spot $g_{s,i}$ in S_s .

the reduced distance between 2 sets of ghosts spots may then be defined as follow:

$$L = rac{\sqrt{\sum_{i=1}^{n} rac{d(g_{s,i},g_{r,k_i})^2}{\sigma_d(g_{s,i},g_{r,k_i})^2}}}{n}$$

if 2 sets of beam spots are the same L=0, and if they are really close then L should be small.



Fit principle

nin ols sis rotation angle degrees

- Some complexities
 - 5 parameters × (3 lenses + focal plane)
 - the beam position is not well known: need to fit it as well (not implemented yet)
 - ghosts sometimes fall in between CCDs (error on position)
 - some ghosts are really dim
 - running one simulation for one geometry configuration is quite fast O(1) s... but that's atually slow when you need to run O(10⁵) for 27 configurations
- Fit strategy
 - fit iteratively one parameter for each lens
 - fit iteratively one lens at a time
 - fit all lenses together
 - fit using multiple configurations at a time
- \Rightarrow No results yet...

- CCOB–NB designed and built at LPSC, sent and received at SLAC in Summer 2021 (after a long journey)
- Used at SLAC on the LSST Camera for Run6 in 2023: lots of high quality data
- Data analysis for optical alignment underway!
 - [github:lsst-camera-dh/ghosts]
 - [github:lsst-camera-dh/ghosts_nb_analysis/]
- New data taking will occur on the summit this summer both for transmission and alignment purposes

