Gravitational wave data analysis Part II

Sylvain Marsat (L2IT,Toulouse)

Outline

Part I

Part II

- Bayesian parameter estimation basics, likelihood
- Parameter space and waveforms
- Fisher matrix approach
- Metropolis-Hastings MCMC, Parallel tempering and example PE
- PE toolbox
- PE results from LVK
- Future detectors and their challenges

Outline

Part I

- GW signals: the basics
- Noise as a stochastic process
- Introducing matched filtering
- Towards real CBC searches
- Other signals: continuous waves, stochastic backgrounds

Part II

- Bayesian parameter estimation basics, likelihood
- Parameter space and waveforms
- Fisher matrix approach
- Metropolis-Hastings MCMC, Parallel tempering and example PE
- PE toolbox
- PE results from LVK
- Future detectors and their challenges

Bayes theorem Likelihood $p(d \mid \theta, M)=\mathcal{L}(d \mid \theta, M)$

$$
p(\theta \mid d, M)=\frac{p(d \mid \theta, M) \mid p(\theta \mid M)}{p(d \mid M)}
$$

Prior distribution

- a priori knowledge of parameters

Posterior distribution

- target of the analysis
- multidim. distribution, discrete samples

Evidence $\quad p(d \mid M)=\int d \theta p(d \mid \theta, M) p(\theta \mid M)$

- normalization of the posterior - important for model comparison
θ inferred params (I7 for GW source)
d data (observed data in detector)
M model (context, assumptions)

The evidence and Bayes ratio

Evidence

$$
p(d \mid M)=\int d \theta p(d \mid \theta, M) p(\theta \mid M)
$$

- ignored in parameter estimation, normalization constant
- multidimensional integral, hard to compute

Bayes factor	- model comparison (usually log)	[Kass-Raftery 1995]		
		$\log _{10}\left(B_{10}\right)$	B_{10}	Evidence against H_{0}
$B_{12}=\frac{p\left(d \mid M_{1}\right)}{p\left(d \mid M_{2}\right)}$	- penalty for overfitting	0 to $1 / 2$ $1 / 2$ to 1	1 to 3.2 32 to 10	Not worth more than a bare mention Substantial
	$\underline{p\left(M_{1} \mid d\right)}=\frac{p\left(d \mid M_{1}\right)}{p\left(d M_{2}\right)} \frac{p\left(M_{1}\right)}{p\left(M_{2}\right)}$	$\begin{aligned} & 1 / 2 \text { to } 1 \\ & 1 \text { to } 2 \\ & >2 \end{aligned}$	$\begin{aligned} & 3.2 \text { to } 10 \\ & 10 \text { to } 100 \\ & >100 \end{aligned}$	Substantial Strong Decisive
	$\overline{p\left(M_{2} \mid d\right)}=\overline{p\left(d \mid M_{2}\right)} \overline{p\left(M_{2}\right)}$			

The likelihood

Likelihood: $p(d \mid \theta)$

$$
\mathcal{L}=p(\text { data } \mid \text { signal params })
$$

Signal model: $h(\theta)$

- includes instrument response
- may be approximate

Assume calibrated data (reality: marginalize over calibration)

$$
\begin{aligned}
d & =h(\theta)+n \\
p(d \mid \theta) & =p(n=d-h(\theta))
\end{aligned}
$$

Likelihood: probability that the noise explains the residuals between data and signal

Whittle likelihood

For a stationary Gaussian process: independence FD, diagonal covariance

$$
\begin{aligned}
& \left\langle\tilde{n}_{k} \tilde{n}_{l}^{*}\right\rangle=\frac{1}{2 \Delta f} S_{n}\left(f_{k}\right) \delta_{k l} \\
& \operatorname{Re} \tilde{n}_{k}, \operatorname{Im} \tilde{n}_{k} \sim \mathcal{N}\left(0, \frac{1}{4 \Delta f} S_{n}\left(f_{k}\right)\right)
\end{aligned}
$$

The likelihood

Likelihood: $p(d \mid \theta)$

$$
\mathcal{L}=p(\text { data } \mid \text { signal params })
$$

Signal model: $h(\theta)$

- includes instrument response
- may be approximate

Assume calibrated data (reality: marginalize over calibration)

$$
\begin{aligned}
d & =h(\theta)+n \\
p(d \mid \theta) & =p(n=d-h(\theta))
\end{aligned}
$$

Likelihood: probability that the noise explains the residuals between data and signal

Whittle likelihood

For a stationary Gaussian process: independence FD, diagonal covariance

$$
\begin{aligned}
& \left\langle\tilde{n}_{k} \tilde{n}_{l}^{*}\right\rangle=\frac{1}{2 \Delta f} S_{n}\left(f_{k}\right) \delta_{k l} \\
& \operatorname{Re} \tilde{n}_{k}, \operatorname{Im} \tilde{n}_{k} \sim \mathcal{N}\left(0, \frac{1}{4 \Delta f} S_{n}\left(f_{k}\right)\right) \\
& \ln \mathcal{L}=\ln p(\mathbf{n})=\sum_{k>0} \ln p\left(\tilde{n}_{k}\right)
\end{aligned}
$$

The likelihood

Likelihood: $p(d \mid \theta)$

$$
\mathcal{L}=p(\text { data } \mid \text { signal params })
$$

Signal model: $h(\theta)$

- includes instrument response
- may be approximate

Assume calibrated data (reality: marginalize over calibration)

$$
\begin{aligned}
d & =h(\theta)+n \\
p(d \mid \theta) & =p(n=d-h(\theta))
\end{aligned}
$$

Likelihood: probability that the noise explains the residuals between data and signal

Whittle likelihood

For a stationary Gaussian process: independence FD, diagonal covariance

$$
\begin{aligned}
\left\langle\tilde{n}_{k} \tilde{n}_{l}^{*}\right\rangle & =\frac{1}{2 \Delta f} S_{n}\left(f_{k}\right) \delta_{k l} \\
\operatorname{Re} \tilde{n}_{k}, & \operatorname{Im} \tilde{n}_{k} \sim \mathcal{N}\left(0, \frac{1}{4 \Delta f} S_{n}\left(f_{k}\right)\right) \\
\ln \mathcal{L} & =\ln p(\mathbf{n})=\sum_{k>0} \ln p\left(\tilde{n}_{k}\right) \\
& =\sum_{k>0}-\frac{1}{2} \frac{4 \Delta f}{S_{n}\left(f_{k}\right)}\left|\tilde{n}_{k}\right|^{2}+\text { const } \\
& =-\frac{1}{2} 4 \int_{f>0} \frac{d f}{S_{n}(f)}|\tilde{n}(f)|^{2} \\
& =-\frac{1}{2}(n \mid n)
\end{aligned}
$$

The likelihood

Likelihood: $p(d \mid \theta)$

$$
\mathcal{L}=p(\text { data } \mid \text { signal params })
$$

Signal model: $h(\theta)$

- includes instrument response
- may be approximate

Assume calibrated data (reality: marginalize over calibration)

$$
\begin{aligned}
d & =h(\theta)+n \\
p(d \mid \theta) & =p(n=d-h(\theta))
\end{aligned}
$$

Likelihood: probability that the noise explains the residuals between data and signal

Whittle likelihood

For a stationary Gaussian process: independence FD, diagonal covariance

$$
\begin{aligned}
& \left\langle\tilde{n}_{k} \tilde{n}_{l}^{*}\right\rangle=\frac{1}{2 \Delta f} S_{n}\left(f_{k}\right) \delta_{k l} \\
& \operatorname{Re} \tilde{n}_{k}, \operatorname{Im} \tilde{n}_{k} \sim \mathcal{N}\left(0, \frac{1}{4 \Delta f} S_{n}\left(f_{k}\right)\right) \\
& \ln \mathcal{L}=\ln p(\mathbf{n})=\sum_{k>0} \ln p\left(\tilde{n}_{k}\right) \\
& \quad=\sum_{k>0}-\frac{1}{2} \frac{4 \Delta f}{S_{n}\left(f_{k}\right)}\left|\tilde{n}_{k}\right|^{2}+\text { const } \\
& \\
& =-\frac{1}{2} 4 \int_{f>0} \frac{d f}{S_{n}(f)}|\tilde{n}(f)|^{2} \\
& \\
& =-\frac{1}{2}(n \mid n) \\
& \ln \mathcal{L}(\theta)=-\frac{1}{2}(h(\theta)-d \mid h(\theta)-d) \quad \begin{array}{l}
\text { Norm of } \\
\text { residuals }!
\end{array}
\end{aligned}
$$

Limitations to Whittle:

Covariance matrix for noise vector in time domain: Toeplitz structure

$$
\text { Toeplitz structure } C\left(t, t^{\prime}\right) \equiv C\left(t-t^{\prime}\right) \quad A=\left[\begin{array}{cccccc}
a_{0} & a_{-1} & a_{-2} & \cdots & \cdots & a_{-(n-1)} \\
a_{1} & a_{0} & a_{-1} & \ddots & & \vdots \\
a_{2} & a_{1} & \ddots & \ddots & \ddots & \vdots \\
\vdots & \ddots & \ddots & \ddots & a_{-1} & a_{-2} \\
\vdots & & \ddots & a_{1} & a_{0} & a_{-1} \\
a_{n-1} & \cdots & \cdots & a_{2} & a_{1} & a_{0}
\end{array}\right]
$$

$A=\left[\begin{array}{ccc}a_{0} & a_{-1} & a_{-2} \\ a_{1} & a_{0} & a_{-1} \\ a_{2} & a_{1} & \ddots \\ \vdots & \ddots & \ddots \\ \vdots & & \ddots \\ a_{n-1} & \cdots & \cdots\end{array}\right.$

Diagonality after DFT requires in fact Circulant structure (periodicity)

$$
C=\left[\begin{array}{ccccc}
c_{0} & c_{n-1} & \cdots & c_{2} & c_{1} \\
c_{1} & c_{0} & c_{n-1} & & c_{2} \\
\vdots & c_{1} & c_{0} & \ddots & \vdots \\
c_{n-2} & & \ddots & \ddots & c_{n-1} \\
c_{n-1} & c_{n-2} & \cdots & c_{1} & c_{0}
\end{array}\right]
$$

Time domain covariance

Can work directly in time domain with Toeplitz structure

- Ringdown analysis: selection of post-merger times
- Dealing with data gaps

Outline

Part I

Part II

- Bayesian parameter estimation basics, likelihood
- Parameter space and waveforms
- Fisher matrix approach
- Metropolis-Hastings MCMC, Parallel tempering and example PE
- Other signals: continuous waves, stochastic backgrounds
- PE toolbox
- PE results from LVK
- Future detectors and their challenges

The parameter space and priors

CBC: $15+2+2$ parameters

- intrinsic: 2 masses, $2 * 3$ spin vectors
- distance: I
- time of coalescence: I
- direction to the observer: 2 angles
- sky position in observer's frame: 2 angles
- polarization angle: I angle
- +eccentricity, periastron: 2
- +tidal deformabilities BNS: 2

Intrinsic parameters

- masses, spins, tidal deformabilities, eccentricity
- expensive: generate GR solution
- priors: physically motivated, but arbitrary

Extrinsic parameters

- distance, time, orientation angles
- cheap: simple geometry of source/ detector
- prior for distance: uniform in volume ?
- prior for time: uniform
- prior for angles: uniform (on a sphere)

Waveform complexity I

Higher harmonics beyond h22: $\quad h_{+}-i h_{\times}=\sum_{\ell \geq 2} \sum_{m=-\ell}^{+\ell}{ }_{-2} Y_{\ell m}(\iota, \varphi) h_{\ell m} \quad h_{\ell m} \propto e^{-i m \phi_{\mathrm{orb}}}$

$$
\left(q=8, \chi_{1}=0.5, \chi_{2}=0, \iota=\pi / 2, \varphi_{0}=1.2\right)
$$

- stronger for high inclination, high mass ratio
- most important at merger

Eccentricity:

- creates another set of harmonics
- fast circularization before merger

Waveform complexity II

Effect of aligned spins

- Aligned/anti-aligned spins: longer/shorter inspiral, reaching higher/lower frequencies
- Degeneracy with mass ratio

Effect of precession

- introduce Precessing frame, follows plane of the orbit
- time-dependent rotation to Inertial frame
- not exact, mode asymmetries !

$$
h_{\ell m}^{\mathrm{P}}=\sum_{m=-\ell}^{\ell} \mathcal{D}_{m^{\prime} m}^{\ell}(\alpha, \beta, \gamma) h_{\ell m^{\prime}}^{\mathrm{I}}
$$

Waveform models

Analytical/numerical methods

- post-Newtonian, post-Minkowskian
- Gravitational Self-Force
- Numerical Relativity

Computational approaches

We need millions of waveform evaluations!

- Phenomenological waveforms: analytic fits
- EOB waveforms: integrate ODE
- NR: costly large-scale simulations

Acceleration of EOB, NR with Reduced Order Models (ROMs), surrogates
Acceleration of likelihoods (heterodyning, ...)
Frontiers of waveform modelling

- eccentric IMR waveforms
- EMRIs: Extreme (Intermediate) Mass Ratio Inspirals
- matter effects for BNS, BNS merger
- environmental effects

Outline

Part I

Part II

- Bayesian parameter estimation basics, likelihood
- Parameter space and waveforms
- Fisher matrix approach
- Metropolis-Hastings MCMC, Parallel tempering and example PE
- Other signals: continuous waves, stochastic backgrounds
- PE toolbox
- PE results from LVK
- Future detectors and their challenges

Fisher matrix approach

Fisher matrix and covariance

Objective: simple simulation of PE
Local Taylor expansion of likelihood around true parameters, ignore noise:

$$
\begin{aligned}
\ln \mathcal{L} & =-\frac{1}{2}\left(h(\theta)-h\left(\theta_{0}\right) \mid h(\theta)-h\left(\theta_{0}\right)\right) \\
h(\theta) & =h\left(\theta_{0}\right)+\Delta \theta_{i} \partial_{i} h+\mathcal{O}\left(\Delta \theta^{2}\right) \\
\ln \mathcal{L} & =-\frac{1}{2} F_{i j} \Delta \theta_{i} \Delta \theta_{j} \\
F_{i j} & \equiv\left(\partial_{i} h \mid \partial_{j} h\right) \quad \text { Fisher matrix } \\
\boldsymbol{\Sigma} & =\mathbf{F}^{-1} \quad \text { Fisher covariance }
\end{aligned}
$$

Gaussian approximation of the posterior, with Fisher covariance

Fisher matrix and covariance

Objective: simple simulation of PE
Local Taylor expansion of likelihood around true parameters, ignore noise:

$$
\begin{aligned}
\ln \mathcal{L} & =-\frac{1}{2}\left(h(\theta)-h\left(\theta_{0}\right) \mid h(\theta)-h\left(\theta_{0}\right)\right) \\
h(\theta) & =h\left(\theta_{0}\right)+\Delta \theta_{i} \partial_{i} h+\mathcal{O}\left(\Delta \theta^{2}\right) \\
\ln \mathcal{L} & =-\frac{1}{2} F_{i j} \Delta \theta_{i} \Delta \theta_{j} \\
F_{i j} & \equiv\left(\partial_{i} h \mid \partial_{j} h\right) \quad \text { Fisher matrix } \\
\boldsymbol{\Sigma} & =\mathbf{F}^{-1} \quad \text { Fisher covariance }
\end{aligned}
$$

Gaussian approximation of the posterior, with Fisher covariance

Parameter biases

In the presence of a residual δh (noise, error in the waveform):
bias in best-fit parameters

$$
\Delta \theta_{i}=F_{i j}^{-1}\left(\partial_{j} h \mid \delta h\right)
$$

In practice...

Valid in the high-SNR limit

- requires signal derivatives
- sensitive to degeneracies (even at high SNR)
- numerically delicate!

Effect of noise on posterior

Effect of noise $d=h_{0}+n$

$\ln \mathcal{L}=-\frac{1}{2}\left(h-h_{0} \mid h-h_{0}\right)+\left(h-h_{0} \mid n\right)-\frac{1}{2}(n \mid n)$

Effect of noise on posterior

Effect of noise $d=h_{0}+n$

$\ln \mathcal{L}=-\frac{1}{2}\left(h-h_{0} \mid h-h_{0}\right)+\left(h-h_{0} \mid n\right)$		
0-noise likelihood	cross-term changes with n	const.

Bias in Fisher approach:

$$
\begin{gathered}
\delta h=n \quad \Delta \theta_{i}=F_{i j}^{-1}\left(\partial_{j} h \mid n\right) \quad\left\langle\Delta \theta_{i}\right\rangle=0 \\
\left\langle\Delta \theta_{i} \Delta \theta_{j}\right\rangle=F_{i k}^{-1} F_{j l}^{-1}\left\langle\left(\partial_{i} h \mid n\right)\left(n \mid \partial_{j} h\right)\right\rangle \\
\langle | n)(n\rangle=\mathbf{1} \\
\left\langle\Delta \theta_{i} \Delta \theta_{j}\right\rangle=F_{i j}^{-1}=\Sigma_{i j}
\end{gathered}
$$

Biases due to noise follow the Fisher covariance

Effect of noise on posterior

Effect of noise $d=h_{0}+n$
$\ln \mathcal{L}=-\frac{1}{2}\left(h-h_{0} \mid h-h_{0}\right)+\left(h-h_{0} \mid n\right)-\frac{1}{2}(n \mid n)$
0 -noise likelihood

> cross-term changes with n

Bias in Fisher approach:

$$
\begin{gathered}
\delta h=n \quad \Delta \theta_{i}=F_{i j}^{-1}\left(\partial_{j} h \mid n\right) \quad\left\langle\Delta \theta_{i}\right\rangle=0 \\
\left\langle\Delta \theta_{i} \Delta \theta_{j}\right\rangle=F_{i k}^{-1} F_{j l}^{-1}\left\langle\left(\partial_{i} h \mid n\right)\left(n \mid \partial_{j} h\right)\right\rangle \\
\langle | n)(n\rangle=\mathbf{1} \\
\left\langle\Delta \theta_{i} \Delta \theta_{j}\right\rangle=F_{i j}^{-1}=\Sigma_{i j}
\end{gathered}
$$

Biases due to noise follow the Fisher covariance

For different noise realizations:

- peak of the posterior moves around by the size of the statistical errors
- width of posterior unaffected (in this approx.)

Outline

Part I

- GW signals: the basics
- Noise as a stochastic process
- Introducing matched filtering
- Towards real CBC searches
- Other signals: continuous waves, stochastic backgrounds

Part II

- Bayesian parameter estimation basics, likelihood
- Parameter space and waveforms
- Fisher matrix approach
- Metropolis-Hastings MCMC, Parallel tempering and example PE
- PE toolbox
- PE results from LVK
- Future detectors and their challenges

Sampling: introduction

Multidimensional posteriors

Curse of dimensionality

- Grids explode:
N^{d}
-Relevant volume vs full volume:

$$
v / V=(\ell / L)^{d}
$$

- In high dimensions, tails are important

Posterior samples

Marginal:

$$
p(x)=\int d y p(x, y)
$$

Conditional:

$$
p(x \mid y)
$$

Samples: independent draws from the pdf
$\frac{1}{n} \sum_{i=1}^{n} f\left(x_{i}\right) \sim_{n \rightarrow+\infty} \int d x p(x) f(x)$

- Mandatory in high dimensions !
- Convenient compression
- Change of variable trivial
- Marginalization trivial

MH MCMC

Markov Chain Monte Carlo

$0 \longrightarrow 0 \longrightarrow 0 \longrightarrow 0 \longrightarrow 0 \longrightarrow 0 \longrightarrow 0$

- chain of values, no memory
- jump proposal, proba. acceptance

MCMC for sampling

- ergodicity (hard !)
- stationarity of the distribution $p(x)$ target prob. distribution $T(x, y)$ transition prob. $x \rightarrow y$

MH MCMC

Markov Chain Monte Carlo

$0 \longrightarrow 0 \longrightarrow 0 \longrightarrow 0 \longrightarrow 0 \longrightarrow 0 \longrightarrow 0$

- chain of values, no memory
- jump proposal, proba. acceptance

MCMC for sampling

- ergodicity (hard !)
- stationarity of the distribution $p(x)$ target prob. distribution $T(x, y)$ transition prob. $x \rightarrow y$
Stationarity: $\quad p(y)=\int d x p(x) T(x, y)$
Detailed balance (sufficient): $\quad p(x) T(x, y)=p(y) T(y, x)$

Markov Chain Monte Carlo

$0 \longrightarrow 0 \longrightarrow 0 \longrightarrow 0 \longrightarrow 0 \longrightarrow 0 \longrightarrow 0$

- chain of values, no memory
- jump proposal, proba. acceptance

MCMC for sampling

- ergodicity (hard !)
- stationarity of the distribution $p(x)$ target prob. distribution $T(x, y)$ transition prob. $x \rightarrow y$
Stationarity: $p(y)=\int d x p(x) T(x, y)$
Detailed balance (sufficient): $\quad p(x) T(x, y)=p(y) T(y, x)$

Metropolis-Hastings MCMC

For generic proposal, build acceptance probability that respects detailed balance
$q(x, y)$ jump proposal $x \rightarrow y$
$\alpha(x, y)$ acceptance probability
$T(x, y)=q(x, y) \alpha(x, y)$ for $y \neq x$
Reject jump with probability $1-\alpha(x, y)$

Markov Chain Monte Carlo

$0 \longrightarrow 0 \longrightarrow 0 \longrightarrow 0 \longrightarrow 0 \longrightarrow 0 \longrightarrow 0$

- chain of values, no memory
- jump proposal, proba. acceptance

MCMC for sampling

- ergodicity (hard!)
- stationarity of the distribution $p(x)$ target prob. distribution $T(x, y)$ transition prob. $x \rightarrow y$
Stationarity: $\quad p(y)=\int d x p(x) T(x, y)$
Detailed balance (sufficient): $\quad p(x) T(x, y)=p(y) T(y, x)$

Metropolis-Hastings MCMC

For generic proposal, build acceptance probability that respects detailed balance
$q(x, y)$ jump proposal $x \rightarrow y$
$\alpha(x, y)$ acceptance probability

$$
T(x, y)=q(x, y) \alpha(x, y) \text { for } y \neq x
$$

Reject jump with probability $1-\alpha(x, y)$
MH: $\quad \alpha(x, y)=\min \left(1, \frac{p(y)}{p(x)} \frac{q(y, x)}{q(x, y)}\right)$
Symmetric proposal: $\alpha(x, y)=\min \left(1, \frac{p(y)}{p(x)}\right)$

- going up: always accept !
- going down: accept or reject

MCMC proposals

Tradeoff:

- narrow: good acceptance, bad exploration
- wide: bad acceptance, good exploration

Simple proposals

Example: Gaussian proposal
Covariance from Fisher ?
Adaptive covariance from chain ?

Tailored proposals

If multimodalities are known, propose non-local jumps to other modes

Ensemble sampling

Evolve chains in parallel, that will use each other to build proposal Affine-invariant

Dynamical evolution

Use past of the chain to build proposal

Parallel tempering

Multimodality issue and idea

Multimodality can require very long time to explore!

Idea: explore flattened (tempered) likelihood surfaces with other chains, exchange information

Multimodality issue and idea

Multimodality can require very long time to explore!

Idea: explore flattened (tempered) likelihood surfaces with other chains, exchange information

Parallel tempering

> prior

Tempered likelihoods: $\quad p_{k}\left(x_{k}\right)=\pi\left(x_{k}\right) \mathcal{L}\left(x_{k}\right)^{\beta_{k}}$

$$
\beta_{k}=1 / T_{k}
$$

Swap acceptance:

$$
\alpha_{i j}=\min \left(1,\left(\frac{\mathcal{L}\left(x_{j}\right)}{\mathcal{L}\left(x_{i}\right)}\right)^{\beta_{i}-\beta_{j}}\right)
$$

Adaptive temperatures to improve swaps

Data from GWOSC

- Simplified waveform model: from PhenomD

$$
\tilde{h}(f)=A e^{i \alpha} e^{2 i \pi f \Delta t} \tilde{h}_{22}^{\text {PhenomD }}(f)
$$

- Parameters: $(M, q, A, \Delta t, \alpha)$
- Whittle likelihood, single-detector
- Uniform priors

Estimated PSD (Welch)

Note: simple amplitude and phase factor, replacing extrinsic parameters

$$
\left(d_{L}, \iota, \varphi, \mathrm{ra}, \mathrm{dec}, \psi\right)
$$

Walkers: 64

MH MCMC example: result

Sample waveforms (5 random walkers)

Trace plot

MH MCMC example: result

Outline

Part I

Part II

- Bayesian parameter estimation basics, likelihood
- Parameter space and waveforms
- Fisher matrix approach
- Metropolis-Hastings MCMC, Parallel tempering and example PE
- PE toolbox
- PE results from LVK
- Future detectors and their challenges

Qualifying PE results: convergence

Trace plots

Help identify burn-in phase

Gelman-Rubin

R : in-chain and between-chain variance Should have R=I

Autocorrelation length

Autocorrelation:

$$
\begin{aligned}
& \text { orrelation: } \\
& \hat{c}_{f}(\tau)=\frac{1}{N-\tau} \sum_{n=1}^{N-\tau}\left(f_{n}-\mu_{f}\right)\left(f_{n+\tau}-\mu_{f}\right)
\end{aligned}
$$

Autocorrelation length:

$$
\hat{\rho}_{f}(\tau)=\hat{c}_{f}(\tau) / \hat{c}_{f}(0) \quad \tau_{f}=\sum_{\tau=-\infty}^{\infty} \rho_{f}(\tau)
$$

Effective samples: N / τ_{f}

Qualifying PE results: quantile-quantile plots

- Idea: the true value must be in the $\mathrm{x} \%$ confidence interval $\mathrm{x} \%$ of the time
- Simulate a number of PE runs, different noise realizations and systems
- Expected deviations from unity known:

$$
\begin{aligned}
\mathcal{L}(p) & =\binom{N}{n} p^{n}(1-p)^{N-n} \\
p & =n / N
\end{aligned}
$$

Gibbs sampling

Gibbs sampling

Update successively parameters:

$$
\begin{aligned}
& x_{i+1} \sim p\left(x \mid y_{i}\right) \\
& y_{i+1} \sim p\left(y \mid x_{i+1}\right)
\end{aligned}
$$

Usage

- decomposing between fast and slow parameters
- sampling across superposed sources

- caveat: inefficient with strong correlations

Elimination of extrinsic parameters and F-statistic

Likelihood marginalization

- Marginalize over time $\int d f / S_{n} e^{2 i \pi f \Delta t} \tilde{h} \tilde{d}^{*} \rightarrow \operatorname{IFFT}\left[\tilde{h} \tilde{d}^{*}\right]$
- Marginalize over phase (not $\quad \int d \phi_{0} \exp \left[\int d f / S_{n} e^{i \phi_{0}} \tilde{h} \tilde{d}^{*}\right]$
possible with HM) $\rightarrow I_{0}\left[\left|\int d f / S_{n} \tilde{h} \tilde{d}^{*}\right|\right]$ Likelihood, not log-likelihood!

Likelihood optimization (F-stat)

- If quantities affect linearly the signal, loglikelihood is quadratic in them and optimization is simple
- Not related to posterior, but very useful for search (reduced dimensions)

$$
\begin{aligned}
& \ln \mathcal{L}=-\frac{1}{2}\left(A e^{i \alpha} h-d \mid A e^{i \alpha} h-d\right) \\
& \frac{\partial \ln \mathcal{L}}{\partial A}=0 \quad \frac{\partial \ln \mathcal{L}}{\partial \alpha}=0
\end{aligned}
$$

On the choice of parameters for sampling

If possible, sample in what the detector observes !

Nested sampling

See Review [arXiv:2205. I 5570]
Compute evidence $p(d \mid M)=\int d \theta p(d \mid \theta, M) p(\theta \mid M)$ and obtain samples $\sim p(\theta \mid d, M)$

- Decompose space in isolikelihood contours, replace integral by ID integral

$$
X\left(L^{\star}\right)=\int_{L>L^{\star}} \pi(\Theta) \mathrm{d} \Theta \quad Z=\int_{0}^{1} L(X) \mathrm{d} X
$$

Remove worst

Draw replacement

Compression, $t \sim \beta\left(n_{\text {live }}, 1\right)$

- Introduce set of live points that will be iteratively replaced, weighted replaced points become posterior samples
- Sampling constrained prior: region sampling, step sampling

Panorama of codes

MCMC codes

- emcee
[arXiv:I 202.3665]
- ptemcee
[arXiv:I50I.05823]
- eryn [arXiv:2303.02I64]

Codes for GW

- LALinference (MCMC, Nest) [arxiv: 140.72| 15$]$
- bilby (MCMC, dynesty) [arxiv:181.02042]

Nested sampling codes

- multinest [arxiv:080,3337]
- polychord
[arXiv:I506.00I7I]
- CPnest
[https://github.com/johnveitch/cpnest]
- dynesty
[arXiv: 1904.02 I 80]
- NessAI [arXi:2.202.11056]
- pyCBC inference [arxiv:1807. 10312$]$

Outline

Part I

Part II

- Bayesian parameter estimation basics, likelihood
- Parameter space and waveforms
- Fisher matrix approach
- Metropolis-Hastings MCMC, Parallel tempering and example PE
- PE toolbox
- PE results from LVK
- Future detectors and their challenges

PE results from LVK: mass posteriors

PE results from LVK: spin posteriors

- Largely undetermined spins for many BBH events
- Aligned spin/mass ratio correlation
- A few detection of aligned spins

- NSBH events: strong constraints on primary spin

PE results from LVK: distance/inclination

- GWI904I2: strong signal with high mass ratio q~4
- Distance-inclination degeneracy is broken by higher modes and precession

- Evidence for 33 mode in the data

Sky localization and rapid localization

- Secondary information: amplitude in each detector
- With two detectors, time delays give a ring on the sky
- Low-latency localization crucial even if approximate: Bayestar

PE challenges: systematics, exceptional events

- GWI9052 I was an exceptionally massive BBH merger
- Surprising properties: in-plane spin ?
- Suggestion (to be confirmed) that eccentricity might be important

PE challenges: systematics, exceptional events

- Examples with disagreement between waveform models...
- Need improvement in models ?

PE challenges: number of events

- Expecting higher event rates: $R \sim d^{\wedge} 3$
- High SNRs for exceptional events: bigger challenge
- Computational challenge ! Automatization required

PE results from LIGO/Virgo: catalog

Hierarchical Bayesian inference

Infer hyperparameters affecting the whole population (population model, cosmology, modified gravity) [arliv: 1809.2063]

$$
p(\Lambda \mid\{d\}) \propto p(\Lambda) \prod_{i=1}^{N_{\mathrm{GW}}} \frac{1}{\xi(\Lambda)} \int d \theta \mathcal{L}\left(d_{i} \mid \theta, \Lambda\right) p(\theta \mid \Lambda)
$$

Selection effect: Malmquist bias, louder events
more likely to be detected
Represented by factor $\quad \xi(\Lambda)=\int d \theta p_{\operatorname{det}}(\theta, \Lambda)$

$$
p_{\text {det }}(\theta, \Lambda)=\int_{x>\text { thres. }} d x \mathcal{L}(x \mid \theta, \Lambda)
$$

Results from LIGO/Virgo: population

- Introduce parametrized population models
- Hierarchical parameter estimation to estimate parameters (with uncertainties)
- Represent posterior predictive distributions

Results from LIGO/Virgo: cosmology

GW measure luminosity distance; if able to get redshift information, constrain $\mathrm{dL}(\mathrm{z})$ and cosmological parameters

Outline

Part I

- GW signals: the basics
- Noise as a stochastic process
- Introducing matched filtering
- Towards real CBC searches
- Other signals: continuous waves, stochastic backgrounds

Part II

- Bayesian parameter estimation basics, likelihood
- Parameter space and waveforms
- Fisher matrix approach
- Metropolis-Hastings MCMC, Parallel tempering and example PE
- PE toolbox
- PE results from LVK
- Future detectors and their challenges

3G detectors

Events/yr (low- •BBH: 60k-90k-I50k median-high): •BNS:300k-1000k-3000k

Detections -BBH: 93% (2 CE+IET): •BNS: 35\%

Computational challenge!

3G detectors

- Much louder signals, systematics important
- Popcorn nature of combined signals
- Superposition problem

New signals:

- Analysis of very long-lived BNS, measurement of tidal effects
- Post-merger BNS signal

Doppler delay from orbit, change in orientation

Analogous to 2 LIGO in

 motion at low frequencies only
From spacecraft s to

 spacecraft r through link s: $\quad y=\Delta \nu / \nu$$$
y_{s l r}=\frac{1}{2} \frac{1}{1-\hat{k} \cdot n_{l}} n_{l} \cdot\left(h\left(t_{s}\right)-h\left(t_{r}\right)\right) \cdot n_{l}
$$

Response time and frequency-dependent:

$$
\begin{gathered}
\mathcal{T}_{s l r}=\frac{i \pi f L}{2} \operatorname{sinc}\left[\pi f L\left(1-k \cdot n_{l}\right)\right] \exp \left[i \pi f\left(L+k \cdot\left(p_{r}+p_{s}\right)\right)\right] n_{l} \cdot P \cdot n_{l}\left(t_{f}\right) \\
\text { + Time-delay interferometry (TD|) } \\
X_{1}^{\mathrm{GW}}=\underbrace{\underbrace{\left[\left(y_{31}^{\mathrm{GW}}+y_{13,2}^{\mathrm{GW}}\right)+\left(y_{21}^{\mathrm{GW}}+y_{12,3}^{\mathrm{GW}}\right)_{, 22}-\left(y_{21}^{\mathrm{GW}}+y_{12,3}^{\mathrm{GW}}\right)-\left(y_{31}^{\mathrm{GW}}+y_{13,2}^{\mathrm{GW}}\right)_{, 33}\right]}}_{x^{\mathrm{G}}} \\
-\underbrace{\left[\left(y_{31}^{\mathrm{GW}}+y_{13,2}^{\mathrm{GW}}\right)+\left(y_{21}^{\mathrm{GW}}+y_{12,3}^{\mathrm{GW}}\right)_{22}-\left(y_{21}^{\mathrm{GW}}+y_{12,3}^{\mathrm{GW}}\right)-\left(y_{31}^{\mathrm{GW}}+y_{13,2}^{\mathrm{GW}}\right)_{, 33}\right]_{, 2233}}_{x^{\mathrm{GW}}\left(t-2 L_{2}-2 L_{3}\right) \simeq x^{\mathrm{GW}}(t-4 L)} .
\end{gathered}
$$

- Massive black holes binaries (MBHBs)
- Population of galactic binaries (DWD), confusion background
- Extreme mass ratio inspirals (EMRIs)
- Stellar-mass black hole binaries (SBHBs)
- Cosmological backgrounds ?

LISA: data

Superposition of sources !

LISA Data Challenges (LDC)

- Ist challenge (Radler): single class of sources
- 2nd challenge (Sangria): MBHBs, GBs, noise

LISA: global fit

Global fit

- Raw dimensionality untractable
- Gibbs sampling across different source types
- Orthogonality between signals
- Noise has to be estimated as well (no signal-free segments)

LISA: challenges for MBHBs

Whitened, band-passed LDC data

LISA: challenges for GBs

- Important source confusion in the middle of the frequency range
- Techniques: transdimensional MCMC (Reversible Jump MCMC)

LISA: challenges for EMRIs

$$
M=1.00 \mathrm{e}+06, \eta=1 \mathrm{e}-05, e_{0}=0.4, p_{0}=10.0
$$

- Complex signals, modelled in perturbative GR (frontier: 2nd order self-force)
- Long-lived signals
- Very rich harmonic structure

- Strong multimodality in parameter space

LISA: non-stationarity and gaps

Non-stationarity

- Non-stationarity background from double WD in the galaxy
- Instrumental non-stationarity over long times
- Glitches (as seen in LISA Pathfinder)

Data gaps

- Both scheduled and unscheduled
- Mask/taper data ?
- Inpainting methods ?

The future of GWDA

Wavelet domain

- more compact representation for chirps
- fast chirplet transform instead of DFT
- natural framework for non-stationarity

Machine learning

- applications to glitch identification
- applications in waveform modelling
- simulation-based inference for PE

GPUs

- computation paradigm of the future
- see also new languages with autograd, Jax

$t \quad[a r X i v: 2009.00043]$

LDC Sangria: first steps of a global fit

LDC Sangria: first steps of a global fit

LDC Sangria: first steps of a global fit

LDC Sangria: first steps of a global fit

LDC Sangria: preview of results

