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Abstract
The effective-one-body (EOB) approach complemented with calibration to numerical relativity (NR) data provides state-of-the-art models of the 
gravitational radiation emitted from coalescing compact binaries. Detection and parameter estimation searches in the LIGO network require fast and 
accurate template waveforms. By construction, EOB waveforms are obtained by numerical integration of a complicated system of ordinary differential 
equations and therefore tend to be too slow to be used directly for LIGO data analysis. Reduced order modeling (ROM) is a proven technique for 
compressing the data obtained from sampling a model over the parameter space in terms of reduced orthogonal bases and interpolated expansion 
coefficients and accelerating waveform generation. We discuss the construction and use of a ROM for the aligned-spin SEOBNR model used in the first 
observing run which was crucial for recent LIGO detections and inference of model parameters. This model has spins aligned with the orbital angular 
momentum with non-trivial dependencies in 3 parameter dimensions. Work on a ROM for its successor aligned-spin SEOBNR model, prepared for the 
second observing run has already been started. For the generic precessing-spin SEOBNR model used in the first observing run the dimensionality of the 
problem increases to 7 dimensions (the mass ratio and the two spin vectors), making the construction of a ROM far more challenging. We have started 
to explore spin subspaces by introducing effective parameters that capture the dominant effects in the waveform.

A prerequisite for LIGO  searches and parameter estimation is the availability of 
fast and accurate models of the GW waveform emitted from BH binaries so as not 
to miss signals or misrepresent their astrophysical parameters. The construction of 
stochastic template banks requires O(108) waveform evaluations. Typically O(107) 
waveform model evaluations are needed for a parameter estimation analyses.

EOB waveforms are obtained from the integration of complicated systems of 
ordinary differential equations and are in general too slow for direct data analysis 
applications. Reduced order modeling (ROM) can provide fast and accurate 
surrogates for such GW models which are crucial for GW searches and parameter 
estimation. 

We discuss ROM approaches based on the singular value decomposition (SVD) and 
tensor product spline interpolation [1,2].

INTRODUCTION

Compressing the waveform space
The polarizations of aligned-spin GWs can be represented in the Fourier domain in a 
highly compressed form as follows: 
• The waveform is split into its non-oscillatory amplitude and phase: 
• The amplitudes and phases are represented as cubic spline interpolants on a sparse 

frequency grid of size m.
• This non-uniform frequency grid is constructed by choosing the spacing such that 

the local spline interpolation error stays constant over the grid (see Fig. 1). 

Input waveforms are generated on a regular grid (see Fig. 2) over the parameter space 
and stored in the sparse frequency grid of size m. The grid can later be refined in 
regions where the modeling error is deemed too large.

Accuracy and performance
In [2] a ROM was built for the non-precessing SEOBNR [3] waveform model. To 
compare two waveforms we can compute their noise-weighted correlation,                   . 
Here we quote the mismatch              . This ROM is accurate to better than 1% mismatch 
(see Fig. 3) and provides a speedup of order a thousand for generating waveforms (see 
Fig. 4).

Figure 3: Accuracy of SEOBNR ROM over the parameter 
space for advanced LIGO design sensitivity.

Figure 4: Speedup of ROM compared 
to non-precessing SEOBNR
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Reduced bases and interpolation over parameter space
We compute reduced orthogonal bases of the n input amplitudes and phases:
• Pack them into the columns of matrices                              .
• Take the SVD of these matrices                       to obtain bases                         .

For each input waveform we calculate a vector of m projection coefficients in terms of 
the reduced bases, forming a matrix                                     , for amplitude and phase.

To complete the model we interpolate the projection coefficients using tensor product 
spline interpolation. This is done separately for the coefficients corresponding to each 
of the m SVD modes, yielding m scalar interpolants of the form

The ROM (or surrogate model) in parameters                              can then be written as

ROM for precessing waveforms
Precession effects are induced by the misalignment of the spins. They can lead to 
important modulations of the signal, and play an important role in parameter 
estimation studies in helping to break degeneracies between other parameters.
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Figure 1: Representation error of waveforms as a 
function of sparse grid size.
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Figure 2: Regular grid for input waveforms in 
mass-ratio and aligned spin on larger BH.
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The  precessing  SEOBNR  model  [4,5] 
includes the 7 degrees of freedom of the 
problem  (the  mass  ratio  and  the  two 
spin  vectors)  and  covers  the  inspiral, 
merger  and  ringdown  phases. 
However, the higher dimensionality of 
the problem makes the ROM approach 
challenging.

A precessing waveform can be decomposed by introducing a frame following the 
motion of the orbital plane. The waveform in this precessing frame is then close to a 
non-precessing waveform. Introducing Euler angles               for the P-frame,p↵,�, �q
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We made preliminary 1D explorations of the smoothness of the decomposed waveform 
when varying parameters, illustrated here with the mass ratio.  
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Figure 6: Smoothness of the amplitude and phase in the P-frame, varying the mass ratio q=1-6

Figure 5: Smoothness of the Euler angles for the P-frame, varying the mass ratio q=1-6
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q “ 1 ´ 6, �1 “ p´0.6, 0.6, 0.5q, �2 “ p0.8, 0,´0.5q
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