
Figure 5: Typical modulations of the CW signal frequency for an
isolated neutron star as a function of time. Top: daily modulation
(blue) due to the rotation of the Earth. Middle: yearly modulation
(red) due to the orbit of the Earth. Bottom: long-term decrease
(yellow) due to the spindown of the star.

For isolated stars, �R(tNS) = 0 and Eq. (47) gives tNS

directly in terms of functions of tdet; otherwise, Eq. (47)
must be numerically inverted to determine the function
tNS(tdet). Finally, the CW phase is

�(tdet) = 2⇡

smaxX

s=0

f
(s) tNS(tdet)

s+1

(s+ 1)!
. (48)

Figure 5 illustrates the typical timescales of modula-
tions for the CW phase of an isolated star. On timescales
of a day, the dominant modulation is from Doppler modu-
lation due to the Earth’s sidereal rotation. Over the course
of a year, the dominant modulation is Doppler modulation
due to the Earth’s orbit. And over many years of obser-
vation, we expect a steady spindown in frequency as the
neutron star loses energy.

2.2.5. Approximate phase
While the full phase expression of Eq. (48) is required

to accurately track the CW phase over long observation
times, it is often useful (see e.g. Sec. 4.2) to consider a
simpler, approximate form of the phase [23, 85, 93].

We first discard the Einstein and Shapiro delay terms
�E�(tdet),�S�(tdet), as they are always small compared
to the other terms in Eq. (47). We then expand Eq. (48),
and discard any terms of order f
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n > 1, and �R··· is any of the Rømer delay terms. This is
because, over the time-span of an observation T , f (s) typ-
ically scales with T
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the oscillatory Rømer terms remain of order unity. Terms
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small enough to be neglected when n > 1. Finally, if
�R(tNS) is present, we assume that the orbital motion is
slow compared to gravitational wave transit time across
the orbit, and we can therefore approximate �R(tNS) ⇡

�R(tdet). Applying these approximations yields:
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In Eq. (50), the instantaneous frequency f(tdet � t0) is
usually replaced by a constant fmax, the maximum fre-
quency of the signal over the observation, thereby giving
the maximum modulation from the Rømer terms.

3. Challenges of continuous wave searches

The fundamental challenge of CW searches lies in ex-
tracting a very weak signal from comparatively noisy data.
While gravitational wave signals from the mergers of bi-
nary black holes and neutron star are strong enough to, on
occasion, be discernible to the naked eye [e.g. 7, 94], CW
signals are comparatively much weaker. We must there-
fore apply data analysis techniques to the data. All such
techniques rely on the idea of matched filtering : we formu-
late a model for the CW signal (Sec. 2), apply that model
to the data, and compute a detection statistic which tells
us which of two hypotheses are favoured: the signal hy-
pothesis, that the data contains a CW signal matching our
model; or the noise hypothesis, that it does not.

A first challenge is breaking the following circular de-
pendency: how we can detect an unknown CW signal,
when we must first know its model parameters, in order to
apply the model to the data, in order to detect the signal
in the first place? It is here that the distinction between
amplitude and phase parameters made in Sec. 2 becomes
important. To see why, we first express the detector re-
sponse functions F+(t), F⇥(t) using two new functions6,
a(t) and b(t) [23]:

F+(t) = a(t) cos 2 + b(t) sin 2 ,

F⇥(t) = b(t) cos 2 � a(t) sin 2 .
(51)

By combining Eqs. (1), (4), (5) and (51), we see that the
component h

2m
(t) of h(t) associated with each harmonic

6Note that, in contract to the definitions given in [23], I have
absorbed the factor of sin ⇣ into the definitions a(t), b(t).
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