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ond, in order to handle a large rate of loud glitches in
O3, we analyze data where these artifacts have been re-
moved via gating [59, 60]. Third, we perform a careful
analysis of correlated magnetic noise that could impact
the search. In addition to constructing a correlated mag-
netic noise budget, as in past runs, we use a Bayesian
statistical framework developed in [61] to constrain the
presence of magnetic noise.

Perhaps the most interesting source of an astrophysical
GWB, given the current network sensitivity, is the GWB
from CBCs. Previous studies have shown that this GWB
may be detectable with Advanced LIGO and Advanced
Virgo running at design sensitivity [62, 63], and the abil-
ity to detect such a background has been confirmed with
mock data challenges [64–66]. Therefore in this work we
carefully consider the implications of our results for the
CBC population. We estimate the GWB using the most
up-to-date information from observations during O3 [67–
72] and compare with the sensitivity of the current and
future detector networks. We show that an upgrade of
the current Advanced LIGO facilities, known as A+ [73],
could dig into a substantial part of the expected param-
eter space for the GWB at its target sensitivity. Fur-
thermore, we apply the methods of [74] to constrain the
merger rate as a function of redshift for binary black holes
(BBHs) by combining the GWB upper limits with in-
formation about individually resolvable events. We find
that the cross-correlation analysis can provide comple-
mentary information at large redshifts, compared to the
population analysis using individually detectable events
alone [75]. We make the results of our cross correlation
analysis available [57], enabling further detailed studies
of the GWB from CBCs and other models.

The rest of this work is organized as follows. In Sec-
tion II, we review the method of the cross-correlation
search. We discuss the data quality procedures and stud-
ies we performed in Section III. We present the main
results of the search in Section IV: we derive upper lim-
its on the GWB in Section IVA, put constraints on the
presence of scalar- and vector-polarized backgrounds in
Section IVB, and in Section IV C we extend these results
by simultaneously fitting for an astrophysical GWB and
an e↵ective GWB arising from magnetic correlations of
terrestrial origin. We compare our upper limits with a
fiducial model for the GWB from CBCs in Section V A,
and derive constraints on the BBH merger rate using the
upper limits on the GWB and observations of individual
CBCs in Section V B. We conclude in Section VI.

II. METHODS

A GWB that is Gaussian, isotropic, unpolarized, and
stationary is fully characterized by a spectral energy den-
sity. It is standard to express the spectrum in terms of
the dimensionless quantity ⌦GW(f), which is the GW en-
ergy density d⇢GW contained in the frequency interval f

to f + df , multiplied by the GW frequency and divided

by df times the critical energy density ⇢c needed to have
a flat Universe

⌦GW(f) =
f

⇢c

d⇢GW

df
, (1)

where ⇢c = 3H
2

0
c
2
/(8⇡G), c is the speed of light, and

G is Newton’s constant. For consistency with other GW
measurements (for example those of [67]), we take the
Hubble constant from Planck 2015 observations to be
H0 = 67.9 km s�1 Mpc�1 [76].

A. Cross correlation spectra

Let us label the GW detectors in the LIGO-Hanford,
LIGO-Livingston, and Virgo (HLV) network by the index
I = {H, L, V }. We denote the time-series output of the
detectors by sI(t), and the Fourier transform by s̃I(f).
Following [47, 58], we define the cross-correlation statistic
for the baseline IJ as

Ĉ
IJ(f) =

2

T

Re[s̃?I(f)s̃J(f)]

�IJ(f)S0(f)
, (2)

where �IJ(f) is the normalized overlap reduction func-
tion [58, 77, 78] for the baseline IJ , the function S0(f)
is given by S0(f) = (3H

2

0
)/(10⇡

2
f

3), and T is the ob-
servation time. In practice, because the noise is non-
stationary, we break the data into segments, and then
take T to be the segment duration. We then average to-
gether segments using inverse noise weighting [58]. If the
noise were stationary, this average would reproduce Eq. 2.
This estimator is normalized so that hĈ

IJ(f)i = ⌦GW(f)
in the absence of correlated noise. In the small signal-to-
noise ratio limit, the variance can be estimated as

�
2

IJ(f) ⇡
1

2T�f

PI(f)PJ(f)

�
2

IJ(f)S2

0
(f)

, (3)

where �f is the frequency resolution, and PI(f) is the
one-sided power spectral density in detector I. Note that
T�f need not equal one if several frequency bins are
coarse grained around the central frequency f to produce
the estimator in Eq. 2.

While we have expressed the cross-correlation estima-
tor in terms of the GW strain channel, in fact this analy-
sis can be applied to any pair of instruments. Following
[61], in Sections III D and IVC we will also employ these
techniques to cross correlate magnetometer channels to
search for correlated magnetic noise.

B. Optimal filtering

Strictly speaking, the optimal estimator for a given sig-
nal includes both auto-correlation and cross-correlation
terms [47]. We only use the cross correlation, and not
auto-correlation, in the search because the noise power


