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Subjects to discuss

e Stellar mass compact objects and their open questions
- white dwarfs
- neutron stars
- black holes

® Supernovae

® |ntermediate/supermassive black holes and structuration of Universe
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Gravitational wave sources
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Current understanding largely from electromagnetic radiation
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Compact objects

White dwarf - AM CVns
+ <1.4 Mo - Double
+ 0.002 - 0.02 Ro degenerates

+ ~1x10°kg m?

Neutron star
+~1.1-2.1 Mo

+ ~12 km

+ ~5x10' kg m=

Black hole
+ ~3 — 80 Mo (stellar mass)
+ Schwarzschild/Kerr/.... radius

Intermediate mass: 10°Me< Mass <10° Mo
Supermassive : 10° Mo < Mass < 10*° Mo
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White dwarfs

e William Herschel detected first white dwarf, 40 Eridani B (Herschel 1785)
® Adams (1915) showed Sirius’ companion was ~1 Mo but L ~ Laogris => small
® ~F|at optical spectrum + small radius led to name white dwarf (Luyten 1922)

® 56000 WDs confirmed via spectroscopy
(Dufour et al. 2017)

® Fusion ceases when ~10% core H used
® Force due to gravity > radiation pressurcys
e Star collapses
® Central temperature & pressure increasdgg
e |f T ~108 K, helium can fuse §
® Balance is re-established

® Star becomes a red giant

e He - C, O until fuel exhausted

® Red giant becomes planetary nebula
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White dwarfs

® Pauli exclusion principal states two electrons
(2 fermions) can not be in same quantum state

® Electrons obey Heisenberg uncertainty principal E;

Ap AX =T
® Momentum for each electron is p~Ap ~h/Ax
4
¥
j 3! Matiere éléctronique
=W . degenerée, 1000kg/ecm3

atiére baryonique
dégénérée, 10" 11 kgfecm 3

"Haormal |:ari-|r :| It wuith -
plenty of spaces. Caris n--rat |:a|11|r|:| lot with
in no I'Jrr el = p . Ears race forthe spot.
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Simplified description of degenerate electrons

If the electron density is n, , the electron separation
IS X ~n.®, so the momentum for each electron is :

1/3
. hn’:‘?

Rewriting pressure as a function of momentum
(p). and using the fact that kinetic energy is :

0.5mv? = 1.5 NKT for an ideal gas

= 0.333 mv? = NKT and P =NKIT/V et p=mv
= 0.333 pv/V =P and n_ ~ V!
= 0.333 n_pv="P

where i 1 1 P
= —T 1) = —T1 —_—
3 el 3 el )
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White dwarf pressure

So the pressure is given by :

1 1 P
P=—-n.pv=-n —

. 1/3
Using D~ hnﬁ
1/3
]- ﬁlﬂ;ﬁ -
> P = gﬂ-ﬂ (hnﬁfﬁ) ~ n}?’fﬁ ~ p
; ' Mg |
So for a degenerate gas,
L pa,’a
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Chandrasekhar mass

If the electron speed 1

approaches the speed of light : p 4/3

—1Np (ﬁﬂiﬂ) ¢~ ﬂ;L;“E ~ P

The relativistic case _ [
Hydrostatic equilibrium :

IS then :
L Ee ML dP = -GMp = -G (4/3 1 r3p)p = -G 4/3 m r p?
pERE N pﬁlﬁ dr r? 2
szp—m P.= JR -4/3Gnrp2dr
= M 4 = -2/3 G n R?p?
M

« The nucleus has a maximum masss of 1.4 M. the Chandrasekhar
masss after Subrahmanyan Chandrasekhar (Chandrasekhar, 1934)
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White dwairf size (for diff. masses) compared to Earth

~05 M@

~1O M@

~13 M@
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Types of white dwarf (WD) - strongly stratified atmospheres
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Why study white dwarfs ?

¢ Understand stellar evolution for the lower mass stars

® Determine the initial mass function of stars (in our Galaxy, elsewhere, ...)

e Study degenerate matter, may help to better understand their tidal disruption
® Deduce the origin of the magnetic field

e Comprehend their role in the evolution of globular clusters

® By understanding their cooling, we can constrain the age of the Universe

® |[mprove understanding of type la supernova (for cosmological distances)

® Essential to find the double degenerates to improve LISA background model
® Also use brightest gravitational wave sources as verification binaries

® \Vera Rubin Observatory (LSST) should find 2000 - >12000 expected with
LISA (Lamberts et al. 2019)
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Forming neutron stars from stars =8 M,

g,
Ji;‘
Remnant =hock
corg WwWave
Explosion
Supernovae
type Il

® Many different types

Silicon fusion

e Study lightcurve to .
understand

® Further observations
required to
understand explosion
mechanism
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Forming neutron stars from white dwarfs

(a) Type- | Supernova

= s Detonation” & £
Binary star system L

Natalie Webb 15
3rd Manitou School, Toulouse, July 2024



Understanding the creation of the elements

The Origin of the Solar System Elements

cosmic ray fission

| G
exploding massive stars
. 5 3
exploding white dwarfs @
ploding | .
26 il 27 @ 25 § 29 | 30 1
Fe | Co Ni f Cu | Zn a

4 45 46 47 48
Rh Pd Ag Cd n
77 78 79 80
Ir Pt Au Hg

64 65 66 67 68 69 70 71
Gd Tb Dy Ho Er Tm Yb Lu

Astronomical Image Credits:
Graphic created by Jennifer Johnson ESA/NASA/AASNova
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Neutron stars

® Neutron stars first proposed by Baade & Zwicky (1934)

® First detected (Sco X-1) by Giacconi et al. (1962) and identified by ShklovskKii
(1967). First pulsar found same year (Hewish et al. 1968).

e Stars of M =9 Mo can evolve to form neutron stars (e.g. Heger et al. 2003)
® For p>107 g cm? electrons have energies >m,,c* - m,pc2 = 1.294 MeVv

® Electrons are forced into the atomic nucleus,combine with protons (inverse 3
decay) and the neutron star coolsviavioss ¢ —+p — n -+ 1,

e At densities of 3 x 10 g cm™ neutrons are forced out of the core and
stabilise the neutron star (baryonic degeneracy)

e |f the chemical potential of the electrons > the muon rest mass, electrons can
disintegrate into muons producing Ve and v; in the general 3-decay

e |f the density reaches 2-3 times the nuclear density (p~ 2.3 x 10** g cm™),
the strong force between nucleons can provoke apparition of new particles,
e.g. hyperons (baryons with three quarks and = 1 is a strange quark)

® The Einstein equation can be rewritten as a system of 1st order differential
equations called TOV (Tolman, 1939; Oppenheimer et Volkoff, 1939)

® Resolving these equations provides the neutron star equation of state
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Neutron stars

White dwarfs 1o neutron stars:

Plabo 10* 10’ 3.2x10" 0
| | (g/cm3)

No neutronisation Neutronisation Neufron drip
7 of the nucleili

M(A,Z)+e - M(A,Z-1)+neut
P+ +e¢ = 71 +neut M(A,Z)%M(A ) LZ) T

* Provokes catastrophic energy * Allows free and stable
loss from system (absorption neutrons

and emission of neutrinos)

* Stops further collapse
* Collapse of matter in this regime
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Neutron star structure

A NEUTRON STAR: SURFACE and INTERIOR
. ‘Bwiss Sf:l?flﬂl -

CORE: ﬁ .
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Matter ‘- . I

ATMOSPHERE
ENVELOPE
CRUST
OUTER CORE
INNER CORE

- Polar cap

"W, Cone of open

.. magnetic

. field
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Neutron Superfluid +
Neutron Vortex  Proton Superconductor
Neutron Vortex )
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The equation of state

To determine the equation of state

Equation of state of e.g. water of nucleii we need to explore
A

. all temperatures and pressures
v ; /densities
3 , :
L)) i I
E solid phase \ Gy ! N . 1000
o ! compressible 1 sypercritical fluid
*, liquid | Big Bang Quark-Gluon
critical pressure E . Plasma
Po : o -itical int —
; ;:g::;g crifical poin % 100
i = Hadron Gas
p, iple point : gaseous phase v Critical
vapour % " Point
critical E— 10
tEll']pEIf'EltLll"E
TTF' Ta > ﬂ “Il.d
Temperature Phase
Liquid-Gas
By Matthieumarechal, CC BY-SA 3.0 1 L Elltron Star
0.1 1 10
Density
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The neutron star equation of state

PAL -Prakash, Ainsworth %_5
Lattimer (1988)

Neutrons + protons

using a schematic 20
potential

i

&
SQM - Prakash, Cooke=. i s
& Lattimer (1995)
Strange Quark
Matter model

Moss

1.0

GM - Glendenning &
Moszkowski (1991) 0.5
Neutrons, protons +
hyperons using a field

theoretical approach 0.0 ' ' :
8 10 12 14 1€
GS - Glendenning & Schaffner-Bielich (1991) Radius (km)
Neutrons, protons + kaons using a field Lattimer &
theoretical approach Prakash (2007)
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Question

To determine the neutron star equation of state, we need to know its mass
and radius.

Mesuring the radius of a neutron star locally in our galaxy is
comparable to measuring .

A) the height of the Eiffel Tower from London
B) the height of a house in the USA from France

C) the width of a hair on the moon

Natalie Webb
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Question

To determine the neutron star equation of state, we need to know its mass
and radius.

Mesuring the radius of a neutron star locally in our galaxy is
comparable to measuring .

C) the width of a hair on the moon
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Neutron star characteristics

? Radiation 10256 4
Beam '
le-10

le-12
le-14
le-16
le-18

le-20

le=2¢
0.01 0.1 1 10

P (s)
« All ® Binary 4 High Energy
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...and the unknown ?

e Fast radio bursts (FRBs), first discovered ~20 years ago

e Rapid (~1 ms) extra-galactic radio bursts

® Burst energies < 10% erg s*

® Some repeat (periodically) — non catastrophic event

® Several thousand discovered through dedicated searches

® Expected to be related to neutron stars, although nature still unknown
® Gravitational wave observations could help elucidate their nature ??
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Black hole concept

John Michell (1724-1793) Pierre-Simon Loplce (1749-1827)

Proposed that massive Provided a mathematical
'dark stars' could exist (1783) description of a 'dark star' (1799)
Natalie Webb 26

3rd Manitou School, Toulouse, July 2024



Consequence of Einstein Equations

The no-hair theorum
(only three parameters : mass, electric charge & angular momentum)

(1D The Schwarzschild solution (Schwarzschild 1916)
Black hole has mass i.e. is static & spherically symmetric

(2) The Reissner-Nordstrom solution (Reissner 1916, Nordstrom 1918)
Black hole has mass + electric charge i.e. is static & spherically sym.

(3) The Kerr solution (Kerr 1963)
Black hole has mass + angular momentum i.e. is staftionary & axisym.

(4) The Kerr-Newman solution (Newman and Janis 1965)
Black hole has mass, electric charge + angular momentum

Note : the term « black hole » was adopted in 1967 during a talk
by John Wheeler

But what are the spins and masses of black holes 7

Natalie Webb
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The event horizon for static and spinning black holes

Schwarzschild black hole Kerr black hole
Spin (a:) =0 Maximum spin (a-) = 1

Credit: NASA Radius = (1+(1-0-2)°5) GM/c?
Radius = 2GM/c? Radius = GM/c?
ISCO = 6GM/c? ISCO (for a.=1) = GM/c?
Natalie Webb

3rd Manitou School, Toulouse, July 2024 28



Frame dragging and the innermost stable circular orbit

Kerr (spinning) -
plock holes //¢

rotaffon of the black hole.

- “"' / Even a particle with
\\ a contrary angular momentum
‘ is swept along by the

EFrFeECT OF FRAME DRAGGING

Fast prﬁg’rade-. = NG e ‘Fhsi;'rétrugradé e
Spindse cxib. spi S s i x lE spin
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Probing strong gravity

(1) Newtonian (2) Special relativity

[ | | 1 II 1

vobsflvem = s'fvem
(3) General relativity (4) Final profile

| ] 1 1 | L1

vcb:‘lrvem vnb: 'hlrem

® Relate to the supernova mechanism
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® Study accretion history in massive black e ——————

holes (dlStIﬂQUISh mergers/acc.) Current BH spin measurements (Sraghis et al. 2022
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Stellar mass black hole formation & Galactic discoveries

® From stars with mass = 20 Mo

® From neutron star-neutron star mergers

® Overdense regions in the primordial Universe that collapsed

® First black hole : Cyg X-1 (Gursky et al. 1963, Giacconi et al.1967)

00
o

o))
o

Cumulative Number
S
o

N
o

1970 1980 1990 2000 2010
Year of discovery

Natalie Webb
3rd Manitou School, Toulouse, July 2024

31



EM Neutron Stars
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Breaking news, Panuzzo et al. 2024 (27 May), A&A

Radial Velocity [km s~1]

—300 -

—— RV predicted from combined solution
® RVS Epoch RV

W Mercator/Hermes RV

| |B * Gaia BH-3
| ® 590 pc
® Period ~ 11.6 years

/ ®32.70 + 0.82 Mo BH

e Companion, very old & metal
poor

®* Mx=0.76 £ 0.05 Mo

S E 3
H ® Possibly from a globular cluster

2016 2018 2020 2022 2024 disrupted by the Milky Way

Time [Julian year]
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..and how did the >50 solar mass black holes form ?

® Stars with a main-sequence mass ~150-260M¢ very hot

® Conversion of photons to e*/e” pairs in hot dense core drives runaway
collapse

® \When collapse halted by oxygen burning, powerful explosion destroys
remnant

® There should be no black holes with masses in the range 50-140Me
® Either black holes created through mergers

® Or, some new development indicates pair-instabilities can be overcome
INn some circumstances

® Need to study final evolutionary stages of stellar evolution & supernovae

Natalie Webb
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How do supermassive black holes (SMBH) form ?

Stellar mass black holes (~3-100 My) form at the end of the lives of
massive stars or from the coalescence of neutron stars

But supermassive black holes (~10°%'° M) can not form in the same way

Accretion onto a stellar mass black hole, even at maximal rate (Eddington
limit), difficult to explain a population of black holes of ~10°My at z>7 (e.g.
z~7.1 e.qg. Mortlock et al. 2011, or 8x108 Mg at z=7.54 Bafados et al. 2018)

Requires high merger rates and/or more massive « seeds » (~10%° M)
and/or super-Eddington accretion to form supermassive black holes
(SMBH, e.g. Volonteri, 2012; Volonteri, Silk & Dubus, 2015)
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Evolution from seeds to supermassive black holes
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(Super-Eddington) accretion onto massive black holes

Tidal disruption events (TDE) ~ a hundred known — LISA can find more (e.qg.
Toscani et al. 2020)!
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Repeated accretion onto massive black holes

e Partial tidal disruption events (TDE) ~ a handful known — LISA can find more !
® How often do they occur ?

¢ \What are the properties of the accretor and the star ?
¢ How much matter is accreted ?

Swift XRT Count Rate (0.3-10 keV)
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Are Quassi Periodic Eruptions (QPEs) evidence for
Extreme Mass Ratio Inspirals (EMRIs) ?

24 Dec 2018 16/17 Jan 2019

T i  Miniutti et al. (2019)
AR 3
S § ¢4 :
® Regular bursts from centres of 7 £ | * $ t i f
galaxies o} E € 5 :
® Probably associated with TDEs “ M
(Quintin et al., 2023) ™ fie Crous) N e thas)
® Varying phenomena turning on/off Miniutti et al. (2023)
® Variety of different examples H
o LISA : -
® Pinpoint EMRIs é  jlieights

QPEs
02+

® Measure general-relativistic and
Lense-Thirring precession L T
0 1000 2000 3000 4000

® Constrain compact object parameters AW i P
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Merging massive black holes

® Binary SMBH can show (sinusoidal)
modulation in long-term light-curves

® Origin unclear could be from
- Doppler boosting mini-discs
- Asymetric accretion streams
- Lump (blob) in circumbinary disc

e Difficult to verify if due to binary black
holes or red-noise (Vaughan et al. 2016)

® Can help to understand when and where
mergers were important in the
formation/evolution supermassive black

holes and find intermediate mass black
holes D'Ascoli et al. 2018
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Expected emisison from merging massive black holes
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Summary

® Much of our knowledge of observational astrophysics from electromag. data
® Compact objects + associated phenomena also radiate in gravitational waves
® Finding and studying stellar mass compact objects constrains stellar evol.

® Studying black holes helps understand how the Universe is structured

® Complementary gravitational wave and electromagnetic observations can
constrain physics, astrophysics and cosmology
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