
  
1Natalie Webb 

3rd Manitou School, Toulouse, July 2024

Astrophysics of 
gravitational waves

sources
Natalie Webb

Institut de Recherche en Astrophysique et Planétologie, Toulouse, France



  
2

Subjects to discuss
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● Stellar mass compact objects and their open questions

- white dwarfs

- neutron stars

- black holes
● Supernovae
● Intermediate/supermassive black holes and structuration of Universe
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Gravitational wave sources
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Current understanding largely from electromagnetic radiation

Natalie Webb 
3rd Manitou School, Toulouse, July 2024



  
5

Compact objects
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White dwarf
   < 1.4 M⊙
 0.002 – 0.02 R⊙
 ∼1 x 109 kg m-3 
 
Neutron star
 ~1.1 - 2.1 M⊙
 ~12 km
 ~ 5 x 1017 kg m-3 

Black hole
 ~3 – 80 M⊙ (stellar mass)
 Schwarzschild/Kerr/…. radius

- AM CVns
- Double 
  degenerates

Intermediate mass: 102
 M⊙< Mass <105 M  ⊙

Supermassive : 106 M  ⊙ < Mass < 1010 M   ⊙
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White dwarfs 
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● William Herschel detected first white dwarf, 40 Eridani B (Herschel 1785) 
● Adams (1915) showed Sirius’ companion was ~1 M⊙ but L ~ L40EriB => small
● ~Flat optical spectrum + small radius led to name white dwarf (Luyten 1922)
● 56000 WDs confirmed via spectroscopy                                                     

(Dufour et al. 2017)
● Fusion ceases when ~10% core H used 
● Force due to gravity > radiation pressure
● Star collapses
● Central temperature & pressure increase
● If T ~108 K, helium can fuse
● Balance is re-established
● Star becomes a red giant
● He → C, O until fuel exhausted
● Red giant becomes planetary nebula
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White dwarfs 
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● Pauli exclusion principal states two electrons       
(2 fermions) can not be in same quantum state

● Electrons obey Heisenberg uncertainty principal   
∆p ∆x ≥ 

● Momentum for each electron is p~∆p ~   /∆x 
_
h

_
h

_
h
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Simplified description of degenerate electrons 
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If the electron density is ne , the electron separation 
is x ~ ne

-1/3 , so the momentum for each electron is :

Rewriting pressure as a function of momentum 
(p), and using the fact that kinetic energy is : 

0.5mv2 = 1.5 NkT for an ideal gas

 0.333 mv2 = NkT         and   P = NkT/V  et p=mv
 0.333 pv/V = P            and   ne ~ V-1

 0.333 ne pv = P

where
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White dwarf pressure 
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So the pressure is given by :

 Using

So for a degenerate gas,
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Chandrasekhar mass 
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If the electron speed 
approaches the speed of light : 

Hydrostatic equilibrium :

dP = -GM = -G (4/3  r3) = -G 4/3  r 2 
dr        r2                            r2

 Pc =   0
R    - 4/3 G  r 2 dr

     = -2/3 G  R2 2 

The relativistic case 
is then :

                      

•The nucleus has a maximum mass of 1.4 Msolar the Chandrasekhar 
mass after Subrahmanyan Chandrasekhar (Chandrasekhar, 1934)



  
11

White dwarf size (for diff. masses) compared to Earth
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~1.0 M⊙

~1.3 M⊙

~0.5 M⊙
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Types of white dwarf (WD) – strongly stratified atmospheres

Natalie Webb 
3rd Manitou School, Toulouse, July 2024

83 % WD - hydrogen

Neutral helium

1 % WD - carbon

7 % WD – ionised helium

5 % WD – cool helium

4 % WD - metals
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Why study white dwarfs ?
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● Understand stellar evolution for the lower mass stars
● Determine the initial mass function of stars (in our Galaxy, elsewhere, …)
● Study degenerate matter, may help to better understand their tidal disruption
● Deduce the origin of the magnetic field
● Comprehend their rôle in the evolution of globular clusters
● By understanding their cooling, we can constrain the age of the Universe
● Improve understanding of type Ia supernova (for cosmological distances)

● Essential to find the double degenerates to improve LISA background model
● Also use brightest gravitational wave sources as verification binaries
● Vera Rubin Observatory (LSST) should find 2000 - >12000 expected with 

LISA (Lamberts et al. 2019)
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Forming neutron stars from stars ≥ 8 M⊙
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Supernovae
type II

● Many different types
● Study lightcurve to 

understand
● Further observations 

required to 
understand explosion 
mechanism
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Forming neutron stars from white dwarfs
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Understanding the creation of the elements
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Neutron stars
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● Neutron stars first proposed by Baade & Zwicky (1934)
● First detected (Sco X-1) by Giacconi et al. (1962) and identified by Shklovskii 

(1967). First pulsar found same year (Hewish et al. 1968).
● Stars of M 9 ≿ M  ⊙ can evolve to form neutron stars (e.g. Heger et al. 2003)
● For ρ>107 g cm-3 electrons have energies >                                          MeV
● Electrons are forced into the atomic nucleus,combine with protons (inverse β 

decay) and the neutron star cools via ν loss 
● At densities of 3 x 1011 g cm-3 neutrons are forced out of the core and 

stabilise the neutron star (baryonic degeneracy)
● If the chemical potential of the electrons > the muon rest mass, electrons can 

disintegrate into muons producing νe and νμ in the general β-decay
● If the density reaches 2-3 times the nuclear density (ρ  2.3 × 10∼ 14 g cm−3 ), 

the strong force between nucleons can provoke apparition of new particles, 
e.g. hyperons (baryons with three quarks and ≥ 1 is a strange quark) 

● The Einstein equation can be rewritten as a system of 1st order differential 
equations called TOV (Tolman, 1939; Oppenheimer et Volkoff, 1939)

● Resolving these equations provides the neutron star equation of state

-



  

18

Neutron stars
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

ﾠ  

r labo

ﾠ  

10 4

ﾠ  

10 7

No neutronisation Neutron dripNeutronisation
of the nucleii

ﾠ  

M (A,Z) + e- ￞ M (A,Z - 1) + n

p+ + e- ￞ n + n

ﾠ  

M (A,Z) ￞ M (A - 1,Z) + n
• Allows free and stable
   neutrons

• Stops further collapse

White dwarfs to neutron stars:

eut

eut

x

ﾠ  

3.2 ﾴ1011

(g/cm³)

● Provokes catastrophic energy 
   loss from system (absorption 
   and emission of neutrinos)

• Collapse of matter in this regime
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Neutron star structure

Natalie Webb 
3rd Manitou School, Toulouse, July 2024



  

20

The equation of state
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By Matthieumarechal, CC BY-SA 3.0

Equation of state of e.g. water
To determine the equation of state
of nucleii we need to explore
all temperatures and pressures
/densities
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The neutron star equation of state
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PAL -Prakash, Ainsworth & 
Lattimer (1988)
Neutrons + protons 
using a  schematic 
potential

SQM – Prakash, Cooke
& Lattimer (1995)
Strange Quark 
Matter model

GM – Glendenning & 
Moszkowski (1991)
Neutrons, protons + 
hyperons using a field 
theoretical approach

GS – Glendenning & Schaffner-Bielich (1991)
Neutrons, protons + kaons using a field
theoretical approach

Lattimer & 
Prakash (2007)
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Question
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To determine the neutron star equation of state, we need to know its mass 
and radius.

  Mesuring the radius of a neutron star locally in our galaxy is
     comparable to measuring :

      A) the height of the Eiffel Tower from London

      B) the height of a house in the USA from France

      C) the width of a hair on the moon 
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Question

Natalie Webb 
3rd Manitou School, Toulouse, July 2024

To determine the neutron star equation of state, we need to know its mass 
and radius.

  Mesuring the radius of a neutron star locally in our galaxy is
     comparable to measuring :

      

      C) the width of a hair on the moon 
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Neutron star characteristics
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...and the unknown ?
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● Fast radio bursts (FRBs), first discovered ~20 years ago
● Rapid (~1 ms) extra-galactic radio bursts
● Burst energies < 1042 erg s-1

● Some repeat (periodically) – non catastrophic event
● Several thousand discovered through dedicated searches
● Expected to be related to neutron stars, although nature still unknown
● Gravitational wave observations could help elucidate their nature ??
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Black hole concept
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John Michell (1724-1793)
Proposed that massive 

'dark stars' could exist (1783) 

Pierre-Simon Laplace (1749-1827)
Provided a mathematical 

description of a 'dark star' (1799) 
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Consequence of Einstein Equations
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The no-hair theorum
(only three parameters : mass, electric charge & angular momentum)

(1) The Schwarzschild solution (Schwarzschild 1916)
Black hole has mass i.e. is static & spherically symmetric 

(2) The Reissner-Nordström solution (Reissner 1916, Nordström 1918) 
Black hole has mass + electric charge i.e. is static & spherically sym.

(3) The Kerr solution (Kerr 1963)
Black hole has mass + angular momentum i.e. is stationary & axisym.

(4) The Kerr-Newman solution (Newman and Janis 1965)
Black hole has mass, electric charge + angular momentum

Note : the term « black hole » was adopted in 1967 during a talk 
by John Wheeler

But what are the spins and masses of black holes ?
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The event horizon for static and spinning black holes

Schwarzschild black hole                           Kerr black hole
Spin (a*) = 0                                                  Maximum spin  (a*) = 1

Credit : NASA Radius = (1+(1-a*²)0.5) GM/c² 
Radius = 2GM/c² Radius = GM/c² 

ISCO = 6GM/c² ISCO (for a*=1) = GM/c² 
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Frame dragging and the innermost stable circular orbit

Kerr (spinning) 
black holes
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Probing strong gravity

 
●Relate to the supernova mechanism 
●Study accretion history in massive black 

holes (distinguish mergers/acc.) Current BH spin measurements (Draghis et al. 2022)
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Stellar mass black hole formation & Galactic discoveries
● From stars with mass ≥ 20 M⊙
● From neutron star-neutron star mergers
● Overdense regions in the primordial Universe that collapsed
● First black hole : Cyg X-1 (Gursky et al. 1963, Giacconi et al.1967)

Natalie Webb 
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Why are the electromagnetic black holes less massive ?
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● Gaia BH-3
● 590 pc
● Period ~ 11.6 years
● 32.70 ± 0.82 M⊙ BH 
● Companion, very old & metal 

poor
● M  = 0.76 ± 0.05 M⋆ ⊙

● Possibly from a globular cluster 
disrupted by the Milky Way

Breaking news, Panuzzo et al. 2024 (27 May), A&A 

Natalie Webb 
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..and how did the >50 solar mass black holes form ? 
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● Stars with a main-sequence mass ~150-260M⊙ very hot
● Conversion of photons to e+/e− pairs in hot dense core drives runaway 

collapse
● When collapse halted by oxygen burning, powerful explosion destroys 

remnant
● There should be no black holes with masses in the range 50-140M⊙

● Either black holes created through mergers
● Or, some new development indicates pair-instabilities can be overcome 

in some circumstances
● Need to study final evolutionary stages of stellar evolution & supernovae
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How do supermassive black holes (SMBH) form ?

Stellar mass black holes (~3-100 M⊙) form at the end of the lives of 
massive stars or from the coalescence of neutron stars

But supermassive black holes (~106-10 M⊙) can not form in the same way

Accretion onto a stellar mass black hole, even at maximal rate (Eddington 
limit), difficult to explain a population of black holes of ~109 M    ⊙ at z>7 (e.g. 
z~7.1 e.g. Mortlock et al. 2011, or 8x108 M  ⊙ at z=7.54 Bañados et al. 2018)

Requires high merger rates and/or more massive « seeds »  (~102-5 M⊙) 

and/or super-Eddington accretion to form supermassive black holes 
(SMBH, e.g. Volonteri, 2012; Volonteri, Silk & Dubus, 2015 ) 

Natalie Webb 
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From Greene,
Strader & Ho
(2020)

Evolution from seeds to supermassive black holes

LISA data 
will help 
to answer 
these 
questions 
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(Super-Eddington) accretion onto massive black holes

Natalie Webb 
3rd Manitou School, Toulouse, July 2024

Lin et al. Nature Astronomy (2018)
5.3 x 104 M⊙  < mass < 1.2 x 105  M⊙  

Tidal disruption events (TDE) ~ a hundred known – LISA can find more (e.g. 
Toscani et al. 2020)!



  
38

Repeated accretion onto massive black holes
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● Partial tidal disruption events (TDE) ~ a handful known – LISA can find more !
● How often do they occur ?
● What are the properties of the accretor and the star ?
● How much matter is accreted ?
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Are Quasi Periodic Eruptions (QPEs) evidence for 
Extreme Mass Ratio Inspirals (EMRIs) ?

● Regular bursts from centres of 7 
galaxies 

● Probably associated with TDEs  
(Quintin et al., 2023)  

● Varying phenomena turning on/off
● Variety of different examples
● LISA :
● Pinpoint EMRIs
● Measure general-relativistic and 

Lense–Thirring precession
● Constrain compact object parameters    

     

Miniutti et al. (2019)

Miniutti et al. (2023)
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Merging massive black holes
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D’Ascoli et al. 2018

● Binary SMBH can show (sinusoidal) 
modulation in long-term light-curves

● Origin unclear could be from
- Doppler boosting mini-discs
- Asymetric accretion streams
- Lump (blob) in circumbinary disc

● Difficult to verify if due to binary black 
holes or red-noise (Vaughan et al. 2016)

● Can help to understand when and where 
mergers were important in the 
formation/evolution supermassive black 
holes and find intermediate mass black 
holes
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Expected emisison from merging massive black holes
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Cocchiararo et al. (2024)
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The rôle of supermassive black holes in the Universe
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Cocchiararo et al. (2024)

Boylan-
Kolchin
et al.
(2009)
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Summary

● Much of our knowledge of observational astrophysics from electromag. data

● Compact objects + associated phenomena also radiate in gravitational waves

● Finding and studying stellar mass compact objects constrains stellar evol. 

● Studying black holes helps understand how the Universe is structured

● Complementary gravitational wave and electromagnetic observations can 
constrain physics, astrophysics  and cosmology 

Natalie Webb 
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