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QED in Monte Carlo applied to
radiative lepton decays

Z. Was∗,
∗

Institute of Nuclear Physics, Polish Academy of Sciences, Krakow

(A) photos is the Monte Carlo of the after-burner type that is it reads in information from

event record, modifies it with added photons (or leptons) and store the events back.

(B) Despite the algorithm is universal that does not mean it has to be of the approximation

only.

1. Aim of my talk is to provide some information why algorithm can be of high precision.

2. In particular I would like to provide some information why it can be imporoved decay

channel by decay channel, and also why form-factors can be then installed in the

program.

3. Fortran version is documented in Comput.Phys.Commun. 79 (1994) 291-308 (some

modifications introduced later)

4. C++ version is documented in: Comput.Phys.Commun. 199 (2016) 86 (some

modifications introduced later in particular about emission of lepton pairs produced

through exotic states)

Z. Was Mareille Luminy Mar, 1, 2024



2

5. Project web pages are at present at: https://wasm.web.cern.ch/wasm/f77.html

http://photospp.web.cern.ch/photospp/

(C) I have rewriten my talk, thanks to previous presentations.

My goal is to provide background for mesons structure dependent form-factors introduction.

I am not too comfortable with the outcome...

My first steps for photos were on paths from Luminy toward Calanques, some time in

∼ 1985.

At that time I was not comfortable with the outcome too ...
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KKMC or PHOTOS rigorous “matrix element× full phase space” implementation
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• Phase-space Monte Carlo simulator is a

module producing “raw events” (includ-

ing importance sampling for possible in-

termediate resonances/singularities)

• Library of Matrix Elements; input for

“model weight”; independent module

• KKMC for e+e− → τ+τ−nγ and

PHOTOS for radiative corrections in de-

cays are non-Markovian algorithms, pho-

tons are generated independently first,

phase space constraints are added later,

thanks to conformal symmetry of eikonal

QED part KKMC or iteratively, Kinoshita-

Lee-Nauenberg theorem, for PHOTOS.

• KKMC handle initial state radiation,

PHOTOS massive states emission too.
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Lipsn+1 → Lipsn

Orthodox Lorentz-invariant phase space (Lips) is in use in PHOTOS!

dLipsn+1(P ) =

d3k1
2k01(2π)

3
...

d3kn
2k0n(2π)

3

d3q

2q0(2π)3
(2π)4δ4

(

P −
n
∑

1

ki − q
)

= d4pδ4(P − p− q)
d3q

2q0(2π)3
d3k1

2k01(2π)
3
...

d3kn
2k0n(2π)

3
(2π)4δ4

(

p−
n
∑

1

ki

)

= d4pδ4(P − p− q)
d3q

2q0(2π)3
dLipsn(p→ k1...kn).

Introduce factor equal 1: d4p of four-vector p, times δ4
(

p−
∑n

1 ki
)

, and another

factor equal 1, integration variable dM1 times δ
(

p2 −M2
1

)

.
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Phase Space Formula of Photos

dLipsn+1(P → k1...kn, kn+1) = dLips+1 tangent
n ×Wn+1

n ,

dLips+1 tangent
n = dkγd cos θdφ× dLipsn(P → k̄1...k̄n),

{k1, . . . , kn+1} = T
(

kγ , θ, φ, {k̄1, . . . , k̄n}
)

. (1)

1. If dLipsn(P ) was exact, then this formula is exact parametrization of dLipsn+1(P )

2. Practical implementation: Take the configurations from n-body phase space.

3. Turn it back into some coordinate variables.

4. construct new kinematical configuration from all variables.

5. Forget about temporary kγθφ. Only weight Wn+1
n and four vectors count.

6. Simultaneous use of several T is possible and necessary/convenient if more than one

charge is present in final state.

7. Choice for T construction depend on matrix element: must tangent at singularities, see

next slide.
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Phase Space: (main formula)

If we choose

Gn : M
2
2...n, θ1, φ1,M

2
3...n, θ2, φ2, . . . , θn−1, φn−1 → k̄1 . . . k̄n (2)

and

Gn+1 : kγ , θ, φ,M
2
2...n, θ1, φ1,M

2
3...n, θ2, φ2, . . . , θn−1, φn−1 → k1 . . . kn, kn+1

(3)

then

T = Gn+1(kγ , θ, φ,G
−1
n (k̄1, . . . , k̄n)). (4)

The ratio of the Jacobians form the phase space weight Wn+1
n for the transformation. Such

solution is universal and valid for any choice of G’s. However, Gn+1 and Gn has to match

matrix element, otherwise algorithm will be inefficient (factor 1010 ...).

In case of PHOTOS Gn ’s

Wn+1
n = kγ

1

2(2π)3
× λ1/2(1,m2

1/M
2
1...n,M

2
2...n/M

2
1...n)

λ1/2(1,m2
1/M

2,M2
2...n/M

2)
, (5)
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Phase Space: (multiply iterated)

By iteration, we can generalize formula (1) and add l particles:

dLipsn+l(P → k1...kn, kn+1...kn+l) =
1

l!

l
∏

i=1

[

dkγid cos θγidφγiW
n+i
n+i−1

]

×dLipsn(P → k̄1...k̄n), (6)

{k1, . . . , kn+l} = T
(

kγl
, θγl

, φγl
,T

(

. . . ,T
(

kγ1 , θγ1 , φγ1 , {k̄1, . . . , k̄n}
)

. . .
)

.

Note that variables kγm , θγm , φγm are used at a time of the m−th step of iteration only,

and are not needed elsewhere in construction of the physical phase space; the same is true

for invariants and angles M2
2...n, θ1, φ1, . . . , θn−1, φn−1 → k̄1 . . . k̄n of (2,3), which

are also redefined at each step of the iteration. Also intermediate steps require explicit

construction of temporary k̄′

1 . . . k̄
′

n . . . k̄′

n+m , statistical factor
1
l! added.

We have got exact distribution of weighted events over n+ l body phase space.
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Phase Space Formula: multichannels.

Often MC algorithm has to be split into branches. In the most general case, when n different

parametrisations of the phase space with different orderings of particles are in use, the cross

section can be written as follows:

dΓX =
∑n

λ=1

∫ 1

0

∏m

i=1
dxi Pλ

[

∑n

δ=1
PδJ

−1

δ (q1(λ, xi), ...qk(λ, xi))
]

−1

×|M |2.

In the above formula the four-momenta qi(λ, xi) are calculated from the random numbers

xi according to the parametrization of the phase space of type λ. The Jacobians Jδ have to

be calculated for all parametrisations of the phase space at the point qi; Pλ denotes the

probability of choosing the parametrization of type λ in the generation, λ thus takes
a

a role of

an additional discrete variable in the generation. Numerical values of probabilities Pλ do not

affect the final distributions, but only the efficiency of the generation.

aBut not δ.
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Phase Space case of complex singularity structure

• Several Gn+1 can be used simultaneously (branching of the generation algorithm).

• Each Gn+1 can be used presample distinct singularities.

• The price: Wn+1
n is more complicated but all remain exact.

• HOWEVER: We have observed that while matching Jacobians for the two branches related

to collinear singularity of photons along direction of l+ and l+ (in Z decay) approximation

must be used if more than one photon is present in final state. Otherwise solution become

inconsistent. Phase space is not iterative, whereas matrix element for multi-photon state is

obtained by iteration.

• AVOID INCONSISTENCY: in expanding manifold curvature: must be the same for phase

space and Matrix Element. Phase space is manifold, Matrix element squared – bi-linear form

on it. Truncation of perturbative expansion or iterative solutions mean truncation in powers of

Ricci tensor, this has to be consistent. Multi-channel phase space is not iterative, single

branch algorithm we explained before is that is OK for expansion and exact phase space

remain. I have learned that hard way.
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Phase Space: (multiply iterated)

We have generalized formula phase space formula to case of l particles added:

dLipsn+l(P → k1...kn, kn+1...kn+l) =
1

l!

l
∏

i=1

[

dkγid cos θγidφγiW
n+i
n+i−1

]

×dLipsn(P → k̄1...k̄n), (7)

{k1, . . . , kn+l} = T
(

kγl
, θγl

, φγl
,T

(

. . . ,T
(

kγ1 , θγ1 , φγ1 , {k̄1, . . . , k̄n}
)

. . .
)

.

Now we have to start talking about matrix elements: Our relation between n and n+l body

phase space is motivated by cancellation of infrared singularities. It provides kind of

triangulation. Measure defining distance between points from manifolds of distinct no. of

particles. Such phase space points are close if they differ by presence of soft photons only.

Experimental user attention necessary. Can 1 GeV photon be ignored or only 0.1 MeV one.

We will move now from exact distribution of weighted events over n+ l body

phase space to case where l is parameter too, but all remain exact!
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CrudeDdistribution and crude matrix element

If we add arbitrary factors f(kγi , θγi , φγi) and sum over l we obtain:

∑

l=0

exp(−F )
1

l!

l
∏

i=1

f(kγi , θγi , φγi)dLipsn+l(P → k1...kn, kn+1...kn+l) =

∑

l=0

exp(−F )
1

l!

l
∏

i=1

[

f(kγi , θγi , φγi)dkγid cos θγidφγiW
n+i
n+i−1

]

×

dLipsn(P → k̄1...k̄n), (8)

{k1, . . . , kn+l} = T
(

kγl
, θγl

, φγl
,T

(

. . . ,T
(

kγ1 , θγ1 , φγ1 , {k̄1, . . . , k̄n}
)

. . .
)

,

F =

∫ kmax

kmin

dkγd cos θγdφγf(kγ , θγ , φγ).← KLN good start

• The olive parts of rhs. give crude distribution over tangent space, orthogonal (ki, θi, φi).

We restrict phase space by kmin (typically 10−6
) kmax arbitrary (boundary by Wn+i

n+i−1).
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Heuristic CW complexes

We define our crude distribution over yellow space

(surface=1) (represented by sum of: red point, green lines and flat yellow square). Later we

do projections into physics space, using T and matrix elements.

NOTE: in KKMC YFS exclusive exponentiation – conformal symmetry is used instead.
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There is nothing wrong in the following:

1. When top to the bottom stand alone generators are used, events are constructed from

coordinates.

2. However, there is nothing wrong in using homeomorfizm from one manifold to another

one; exploit corresponding induced measure too.

3. This of course, only when measure on original manifold is well known !

4. That means original non-bremsstrahlung events must be generated following matrix

element × phase space paradigm.

5. If not, difficult to control approximations will appear.

6. On the other hand, it does not matter what was the parametrization used in original

generator.

7. Precision is not compromised by that.

8. Note that the integrated corner of phase space is of extremely soft photons

kmin ∼ 10−6,−7
where photons formation time is larger that hard process time and

classical QED limit is imminent.
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In the last two years:

1. PHOTOS generation was enriched with emissions of extra pairs generated

from exotic intermediate states such as dark photons or scalars.

2. That is for your information

3. But is of no importance for applications of interest today.

4. I should recall the message, that algorithm can be downgraded (by initialization

switch) to single emissions mode, kmin must be then larger.

5. Such mode is useful in development and installation tests of:

decay channel dependent, matrix element based, emission kernels.
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Technicalities

• (1) The C++ implementation does not require complicated transfer of event information

through consecutive CPU time consuming calls on constructors and destructors of HepMC

format event record (several time for each event) that should and can be avoided.

• (2) In PHOTOS the library of decay channel dependent matrix element based kernels is

encapsulated

• (3) These kernels are calculated often with the help of scalar QED, which is not

fundamental theory. Explicit form of ME is coded and is waiting for form-factors.

• (4) They are coded explicitly so form factors can be added.

• (5) But the user prepared ones can not be passed through pointers, I have bad

experiences on that in case of tauola. I have prepared, nobody was using.

• WARNING: off shell matrix elements can not be used directly, they need to have form

suitable for multi-photon emissions. Be careful with Kleiss-Stirling spin amplitude methods
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• One of the necessary steps was to verify, that once PHOTOS activated, the

lepton spectra will be reproduced as far as the LL corrections to required order.

• Formal solution of QED evolution equation can be written as:

D(x, βch) = δ(1−x)+βchP (x)+
1

2!
β2
ch{P×P}(x)+

1

3!
β3
ch{P×P×P}(x)+. . .

(9)

where P (x) = δ(1− x)(ln ε+ 3/4) + Θ(1− x− ε) 1x (1 + x2)/(1− x)

and {P × P}(x) =
∫ 1

0
dx1

∫ 1

0
dx2δ(x− x1x2)P (x1)P (x2).

• In the LL contributing regions, phase space Jacobian’s of PHOTOS trivialize

(CPC 1994). The solution above is reproduced by PHOTOS in a straightforward

manner, for each of the outgoing charged lines.

• But it is only a limit! PHOTOS treat phase space exactly and covers all

corners.

• In a similar way (simplifying phase space Jacobians and dropping parts of ME)

one can get convinced that distribution of soft photons is as should be for

exclusive exponentiation.
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• So far we were discussing building blocks, but how does it work in practice?

• Avalanche of numerical results...

• Important: We could see that kernel simplified with respect to ME is sufficient for

sub-permille precision.→ Much easier to use.

• MC-TESTER by P. Golonka, N. Davidson, T. Przedzinski, Z. Was is used for tests.

Idea is to generate histograms of all possible invariant masses which can be

constructed from final state momenta.

• One can select events, for example only photons of energy above 1 GeV will be

considered as final state.

• On one frame distribution from two program is printed (in logarithmic scale) and

their ration (in linear scale).

• No of events of distinct (in the selected way) final states is printed too.
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Figure 1: Comparison of standard PHOTOS and KORALZ for single photon emission. In the

left frame the invariant mass of the µ+µ−
pair; SDP=0.00534. In the right frame the

invariant mass of µ−γ; SDP=0.00296. The histograms produced by the two programs

(logarithmic scale) and their ratio (linear scale, black line) are plotted in both frames. The

fraction of events with hard photon was 17.4863 ± 0.0042% for KORALZ and 17.6378 ±

0.0042% for PHOTOS.
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Figure 2: Comparisons of improved PHOTOS and KORALZ for single photon emission. In

the left frame the invariant mass of the µ+µ−
pair. In the right frame the invariant mass of

µ−γ pair is shown. In both cases differences between PHOTOS and KORALZ are below

statistical error. The fraction of events with hard photon was 17.4890 ± 0.0042% for

KORALZ and 17.4926 ± 0.0042% for PHOTOS.
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Figure 3: Comparison of standard PHOTOS with multiple photon emission and KKMC with

second order matrix element and exponentiation. In the left frame the invariant mass of the

µ+µ−
pair; SDP=0.00409. In right frame the invariant mass of the µ−γ pair; SDP=0.0025.

The pattern of differences between PHOTOS and KKMC is similar to the one of Fig 1. The

fraction of events with hard photon was 16.0824 ± 0.0040% for KKMC and 16.1628 ±

0.0040% for PHOTOS.
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Figure 4: Comparisons of improved PHOTOS with multiple photon emission and KKMC with

second order matrix element and exponentiation. In the left frame the invariant mass of the

µ+µ−
pair; SDP=0.0000249. In the right frame the invariant mass of the µ−γ pair;

SDP=0.0000203. The fraction of events with hard photon was 16.0824 ± 0.004% for KKMC

and 16.0688 ± 0.004% for PHOTOS.
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Figure 5: Comparisons of standard PHOTOS with multiple photon emission and KKMC with

second order matrix element and exponentiation. In the left frame the invariant mass of the

µ+µ−
pair; SDP= 0.00918. In the right frame the invariant mass of the γγ pair;

SDP=0.00268. The fraction of events with two hard photons was 1.2659 ± 0.0011% for

KKMC and 1.2952 ± 0.0011% for PHOTOS.
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Figure 6: Comparisons of improved PHOTOS with multiple photon emission and KKMC with

second order matrix element and exponentiation. In the left frame the invariant mass of the

µ+µ−
pair; SDP= 0.00142. In the right frame the invariant mass of the γγ; SDP=0.00293.

The fraction of events with two hard photons was 1.2659 ± 0.0011% for KKMC and 1.2868

± 0.0011% for PHOTOS.
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Matrix Element for Z decay:

• Our discussion of double emission amplitudes was started from the single

photon one

• The same is true for amplitudes of other processes. We have to check if they

are similar to this for Z decay.

• In particular only if they structure match we can expect that our discussion of

multi-emission may apply as well.

•

I = IA + IB + IC

•

I = J/

[(

p·e1
p·k1

−
q ·e1
q ·k1

)]

−

[

1

2

e/1k/1
p·k1

]

J/+ J/

[

1

2

e/1k/1
q ·k1

]

three gauge invariant parts, IA is eikonal; IB , IC carry collinear contrib from p and q
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Scalar QED: B → Kπ decays – pure IA

• The one-loop QED correction to the decay width can be represented as the

sum o f the Born contribution with the contributions due to virtual loop diagrams

and soft and hard photon emissions.

dΓTotal = dΓBorn
{

1 +
α

π

[

δSoft(mγ , ω) + δVirt(mγ , µUV
)
]

}

+ dΓHard(ω)

• where for Neutral meson decay channels, hard photon contribution:

dΓHard = |ABorn|24πα

(

q1
k1.ǫ

k1.kγ
− q2

k2.ǫ

k2.kγ

)2

dLips3(P → k1, k2, kγ)

• for Charged meson decay channels, hard photon contribution:

dΓHard = |ABorn|24πα

(

q1
k1.ǫ

k1.kγ
− q

P.ǫ

P.kγ

)2

dLips3(P → k1, k2, kγ)
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Scalar QED for γ∗ → π+π−γ: IA and non-leading

• This case is different, because of spin structure. One can not make spin of
initial state out of internal spin of outgoing particles.

H
µ

=
e2F2π(p

2)

p2

{
(q1 + k − q2)

µ q1 · ǫ∗

q1 · k
+ (q2 + k − q1)

µ q2 · ǫ∗

q2 · k
− 2ǫ

∗µ
}

• As in case of Z decay one can separate spin amplitude into gauge invariant

parts (C = e2F2π(p
2)

p2 ):

H
µ
I = C (q1−q2)

µ

(
q1 · ǫ∗

q1 · k − q2 · ǫ∗

q2 · k

)
, H

µ
II = C

(
k
µ

(
q1 · ǫ∗

q1 · k +
q2 · ǫ∗

q2 · k

)
− 2ǫ

∗µ
)

,

(10)

• This can be improved with the following change:

H
µ

I′
= C

(
(q1 − q2)

µ
+ k

µ q2 · k − q1 · k
q2 · k + q1 · k

)(
q1 · ǫ∗

q1 · k − q2 · ǫ∗

q2 · k

)
, (11)

H
µ

II′
= C

(
kµ

q2 · k + q1 · k (q1 · ǫ∗ + q2 · ǫ∗) − ǫ
∗µ
)

. (12)

• In the second case non-eikonal term is free of collinear logarithm, but is non

trivial and contributes 0.2 % to total rate, thus can be numerically studied!
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QED for W → lνlγ: IA, IB and non-leading

M
σ
λ,λν ,λl

(k,Q, pν , pl) =

[
Ql

2 k · pl

bσ(k, pl) −
QW

2 k · Q
(bσ(k, pl) + bσ(k, pν))

]
Bλ

λl,λν
(pl, Q, pν)

+
Ql

2 k · pl

∑

ρ=±

U
σ
λl,ρ

(pl,ml, k, 0, k, 0)B
λ

ρ,−λν
(k,Q, pν)

− QW

2 k · Q
∑

ρ=±

(
Bλ

λl,−ρ(pl, Q, k)U
σ
−ρ,−λν

(k, 0, k, 0, pν , 0) (13)

+ U
σ
λl,ρ

(pl,ml, k, 0, k, 0)B
λ

ρ,−λν
(k,Q, pν)

)
,

Bλ

λ1,λ2
(p1, Q, p2) ≡ g

2
√
2
ū(p1, λ1) ǫ̂

λ
W (Q)(1 + γ5) v(p2, λ2) ,

Uσ
λ1,λ2

(p1,m1, k, 0, p2,m2) ≡ ū(p1, λ1) ǫ̂
σ
γ (k)u(p2, λ2) , (14)

δλ1λ2
bσ(k, p) ≡ U

σ
λ1,λ2

(p,m, k, 0, p,m) ,

Ql and QW are the electric charges of the fermion l and the W boson, respectively, in units of the positron charge,

ǫσγ (k) and ǫλW (Q) denote respectively the polarization vectors of the photon and the W boson. An expression of

the function Uσ
λ1,λ2

in terms of the massless spinors.
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Matrix Element (anything useful seen?):

• We have seen that in all cases terms IA, IB , IC appear

• These are the only ones which carry soft or collinear contributions

• That is why universal weight of Photos could be defined.

• That is also why the solution defined from Z amplitudes work for other

processes as well

• part of reliability proof. Note that it is for spin amplitudes level, thus such

corrections do not necessarily break spin correlations. → extra slides

• Tests confirm that ME complete kernel (process dependent) is not necessary

even for sub-permille precision level→ good for users.

Z. Was Mareille Luminy Mar, 1, 2024



Single photon, ME. 29

Nearly complete formula now if we identify factors f(kγi , θγi , φγi) with

IA-s of previous slides. Still questions of ME not explained see following slides ...

∑

l=0

exp(−F )
1

l!

l
∏

i=1

f(kγi , θγi , φγi)dLipsn+l(P → k1...kn, kn+1...kn+l) =

∑

l=0

exp(−F )
1

l!

l
∏

i=1

[

f(kγi , θγi , φγi)dkγid cos θγidφγiW
n+i
n+i−1

]

×

dLipsn(P → k̄1...k̄n) |MB(P → k̄1...k̄n)|
2, (15)

{k1, . . . , kn+l} = T
(

kγl
, θγl

, φγl
,T

(

. . . ,T
(

kγ1 , θγ1 , φγ1 , {k̄1, . . . , k̄n}
)

. . .
)

,

F =

∫ kmax

kmin

dkγd cos θγdφγf(kγ , θγ , φγ).← KLN good start

• The olive parts of rhs. give crude distribution over tangent space, The whole formula is of

the lowest order in exponentiation scheme E
¯
ikonal level only!
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WE define the complete set of spin amplitudes for emission of n photons in O(αr)
CEEX

, r = 0, 1, 2 as follows:

M
(0)
n

(
p
λ
k1
σ1

. . . kn
σn

)
=
∑

{℘}

∏n
i=1 s

{℘i}

[i]
β
(0)
0

(p
λ;X℘

)
, (16)

M
(1)
n

(
p
λ
k1
σ1

. . .
kn
σn

)
=
∑

{℘}

∏n
i=1 s

{℘i}

[i]




β
(1)
0

(p
λ;X℘

)
+
∑n

j=1

β
(1)
1{℘j}

(
p
λ

kj
σj

;X℘

)

s

{℘j}

[j]




 , (17)

M
(2)
n

(
p
λ
k1
σ1

. . . kn
σn

)
=

=
∑

{℘}

n∏

i=1

s
{℘i}

[i]




β
(2)
0

(p
λ;X℘

)
+
∑n

j=1

β
(2)
1{℘j}

(
p
λ

kj
σj

;X℘

)

s

{℘j}

[j]

+
∑

1≤j<l≤n

β
(2)
2{℘j℘l}

(
p
λ

kj
σj

kl
σl

;X℘

)

s

{℘j}

[j]
s

{℘l}

[l]




 .(18)

The coherent sum is taken over set {℘} of all 2n
partitions – the partition ℘ is defined as a vector

(℘1, ℘2, . . . , ℘n); ℘i = 1 for an ISR and ℘i = 0 for an FSR photon. The set of all partitions is explicitly the

following:

{℘} = {(0, 0, 0, . . . , 0), (1, 0, 0, . . . , 0), (0, 1, 0, . . . , 0), (1, 1, 0, . . . , 0), . . . (1, 1, 1, . . . , 1)}.

The s-channel four-momentum in the (possibly) resonant s-channel propagator is

X℘ = pa + pb −
∑n

i=1 ℘i ki.

At O(αr) we have to provide functions β
(r)
k , k = 0, 1, ..., r, from Feynman diagrams, which are infrared-finite by

construction yfs:1961. Their actual precise definitions can be found in other refs. on KKMC. Here we shall define only
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the most essential ingredients. The lowest-order β
(0)
0 are just Born spin amplitudes times a certain kinematical factor

β
(0)
0

(p
λ;X

)
= B

(p
λ;X

) X2

(pc + pd)2
. (19)

The Born spin amplitudes B
(p
λ;X

)
and other spin amplitudes are calculated using the spinor technique of Kleiss

and Stirling (KS) reformulated a bit.. Soft factors s
(ω)

[i]
, ω = 0, 1, are complex numbers, see ref. for exact definitions;

here we only need to know their absolute values

∣∣∣s(1)[i]

∣∣∣
2
= − e2Q2

e

2

(
pa

kipa

− pb

kipb

)2

,
∣∣∣s(0)[i]

∣∣∣
2
= −

e2Q2
f

2

(
pc

kipc

− pd

kipd

)2

. (20)

The factor Θ̄(Ω) defines the infrared (IR) integration limits for real photons. More precisely for a single photon,

complementary domain Ω includes the IR divergence point k = 0, which is excluded from the MC phase space, we

define a characteristic function Θ(Ω, k) = 1 for k ∈ Ω and Θ(Ω, k) = 0 for k 6∈ Ω. The characteristic function

for the phase space included in the integration is Θ̄(Ω, k) = 1 − Θ(Ω, k). The characteristic function for all

photons in the MC phase space is

Θ̄(Ω) =

n∏

i=1

Θ̄(Ω, ki). (21)

In the present program we opt for an Ω traditionally defined by the photon energy cut condition k0 < Emin .
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Consequently, the YFS form factor reads

Y (Ω; pa, ..., pd) = Q
2
eYΩ(pa, pb) + Q

2
fYΩ(pc, pd)

+ QeQfYΩ(pa, pc) + QeQfYΩ(pb, pd) − QeQfYΩ(pa, pd) − QeQfYΩ(pb, pc),

(22)

where

YΩ(p1, p2) ≡ 2αB̃(Ω, p1, p2) + 2αℜB(p1, p2)

≡ − 2α
1

8π2

∫
d3k

k0
Θ(Ω; k)

(
p1

kp1

− p2

kp2

)2

+ 2αℜ
∫

d4k

k2

i

(2π)3

(
2p1 + k

2kp1 + k2
− 2p2 − k

2kp2 − k2

)2

(23)
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Basic formula is the same (OK it is similar only but differ in essential results)

1. for phase space limits iterative solution instead of re-scaling available thanks to

conformal symmetry is used.

2. Instead of expansion of matrix elements into β
(1)
i and sum over partition,

products of (si + β
(1)
i ) of each photon is used.

3. surprisingly this does not destroy second order parts, but help include the

dominant parts of that.

4. β
(1)
i as used in photos consist of process independent part, (after integration it

gives LL parts), but also process dependent parts (for some decays only).

5. I should say more about virtual corrections.

6. for emission kernels they can be simply coded as form-factors.

7. Far more fundamental is what to do with loop corrections beyond KLM level.

They need to be included in rates of events prior photos.

8. That is questionable statement already for two-body decays.
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9. for more than two body substantial work may be needed for high precision level.
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B− → π0K−; standard PHOTOS looks good, but ...
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B− → π0K−; standard PHOTOS ... not perfect
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B− → π0K−; ME improved PHOTOS Looks good ...
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B− → π0K−; ME improved PHOTOS ... and is good.
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B0 → π−K+; standard PHOTOS Looks good ...
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B0 → π−K+; standard PHOTOS ... but not perfect.
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B0 → π−K+; ME improved PHOTOS Looks good ...

, MeVγE
0 500 1000 1500 2000 2500

γ
/d

E
Γ

d

210

3
10

410

5
10

6
10

710

8
10

9
10

Photon Energy

PHOTOS (Corrected)

SANC (Scalar QED)

, MeV-πE
500 1000 1500 2000 2500

-
π

/d
E

Γ
d

410

5
10

6
10

710

8
10

9
10

Pion Energy

 = 5279 MeV0
B

M

 = 139 MeV-πM

 = 494 MeV+KM

γθcos
-1 -0.5 0 0.5 1

γ
θ

/d
c
o

s
Γ

d

6
10

710

-πPhoton angle with res. 

γ +
 K-π → 0B

acol.
θcos

-1 -0.5 0 0.5 1

a
c

o
l.

θ
/d

c
o

s
Γ

d

210

3
10

410

5
10

6
10

710

8
10

9
10  acoll. angle

+
 K-π

 = 1.0000(3)
BornΓ/TotalΓ

 = 900 MeV
UV

µ

Z. Was Mareille Luminy Mar, 1, 2024



Back to numerical results. 42

B0 → π−K+; ME improved PHOTOS ... also perfect !
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Other processes

Results for W , H , and γ∗ → π+π− are of similar quality.

Important: For γ∗ → π+π− ME corrections were larger than in other cases

Tests for K± → l±νπ+π− were started but fall from the table. In general for

more than two body decays effort for tests/developments was never enough to

match sophistication of the one presented earlier.
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... but of importance.

Essential details to preserve spin correlations

Note that the spin carried out by photon is in most cases zero, orbital and

spin of photon cancel out completely in soft and collinear limit.

only in ultra-hard ultra collinear configurations of∼ 1/3α/π weight it is not

the case.

PHOTOS was developed keeping that in mind. PURPOSE: not to destroy spin

correlations of the consecutive decays.
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1. we are using STANDARD and FORMAL parametrizations of Lorentz group.

One can express it with the help of consecutive boosts and rotations.

2. Convenient for Monte Carlo event construction!

3. For the definition of coordinate system in the P -rest frame the x̂ and ŷ axes of the

laboratory frame boosted to the rest frame of P can be used. The orthogonal

right-handed system can be constructed with their help in a standard way.

4. We choose polar angles θ1 and φ1 defining the orientation of the four momentum k̄2 in

the rest frame of P . In that frame k̄1 and k̄2 are back to back
a
, see fig. (1).

5. The previous two points would complete the definition of the two-body phase space, if

both k̄1 and k̄2 had no measurable spin degrees of freedom visualizing themselves e.g.

through correlations of the secondary decay products’ momenta. Otherwise we need to

know an additional angle φX to complete the set of Euler angles defining the relative

orientation of the axes of the P rest-frame system with the coordinate system used in

the rest-frame of k̄2 (and possibly also of k̄1), see fig. (2).

aIn the case of phase space construction for multi-body decays k̄2 should read as a state representing

the sum of all decay products of P but k̄1.
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6. If both rest-frames of k̄1 and k̄2 are of interest, their coordinate systems are oriented

with respect to P with the help of θ1, φ1, φX . We assume that the coordinate systems

of k̄1 and k̄2 are connected by a boost along the k̄2 direction, and in fact share axes:

z′ ↑↓ z′′, x′ ↑↑ x′′
, y′ ↑↓ y′′

.

7. For the three-body phase space: We take the photon energy kγ in P rest frame. We

calculate: photon, k1 and k2 energies, all in k1 + k2 frame.

8. We use the angles θ, φ, in the rest-frame of the k1 + k2 pair: angle θ is an angle

between the photon and k1 direction (i.e. −z′′ ). Angle φ defines the photon azimuthal

angle around z′′, with respect to x′′
axis (of the k2 rest-frame), see fig. (3).

9. If all k1, k2 and k1 + k2 rest-frames exist, then the x-axes for the three frames are

chosen to coincide. It is OK, all frames connected by boosts along z′′ see fig. (3).

10. To define orientation of k2 in P rest-frame coordinate system, and to complete

construction of the whole event, we will re-use Euler angles of k̄2: φX , θ1 and φ1 (see

figs. 4 and 5), defined again of course in the rest frame of P .
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Figure 1: The angles θ1, φ1 defined in the rest-frame of P and used in parametrization of

two-body phase-space.
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Figure 2: Angle φX is also defined in the rest-frame of P as an angle between (oriented)

planes spanned on: (i) k̄1 and ẑ-axis of the P rest-frame system, and (ii) k̄1 and x′′
-axis of

the k̄2 rest frame. It completes definition of the phase-space variables if internal orientation

of k̄1 system is of interest. In fact, Euler angle φX is inherited from unspecified in details,

parametrization of phase space used to describe possible future decay of k̄2 (or k̄1).
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Figure 3: The angles θ, φ are used to construct the four-momentum of kγ in the

rest-frame of k1 + k2 pair (itself not yet oriented with respect to P rest-frame). To

calculate energies of k1, k2 and photon, it is enough to know m1, m2, M and

photon energy kγ of the P rest-frame.
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Figure 4: Use of angle φx in defining orientation of k1, k2 and photon in the rest-

frame of P . At this step only the plane spanned on P frame axis ẑ and k2 is oriented

with respect to k2 × x′′ plane.
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Figure 5: Final step in event construction. Angles θ1, φ1 are used. The final orien-

tation of k2 coincide with this of k̄2.
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