Decays to four charged leptons at LHCb

Vitalii Lisovskyi (Aix Marseille Univ, CNRS/IN2P3, CPPM)

Marseille, 29/Feb/2024

Impostor alert

- A Belle II person speaking about LHCb measurements :)
 - Some slides refurbished from Harry Cliff (thanks!)

When you lie on the application but still get the job

Why multileptons?

siblings of $B^{\pm} \to \ell^{\pm} \nu_{\ell}$ and $B^{\pm} \to \ell^{\pm} \nu_{\ell} \gamma$

- - $B^0_{(s)} \to \mu^+ \mu^-$ or $B^0_{(s)} \to \gamma \gamma$ are linked to $B^0_{(s)} \to \ell^+ \ell^- \ell^+ \ell^-$
 - Helicity-suppression (partially?) lifted \rightarrow all lepton flavours are okay
 - Very rare nevertheless (loop and α^2)
 - Can also play the same trick on electromagnetic decays: $\psi \rightarrow \ell^+ \ell^- \ell^+ \ell^- t$ to validate the experimental procedure, more on this later
 - Not so rare (tree but α^2), allows to see an actual signal peak

• Previous talks (Pierre et al) motivated $B^{\pm} \to \ell^{\pm} \ell^{\mp} \ell^{\pm} \nu_{\ell}$ as hadron-collider-friendly

• The same idea can be applied to (already friendly) decays without neutrinos:

B to four leptons

• Several important SM contributions:

[Nucl.Phys.B 577 (2000) 240-260]

rate ~ 10^{-10} for B_s^0 , 10^{-12} for B^0

[Danilina, Nikitin, Phys. Atom. Nuclei 81, 347–359 (2018)]

Vitalii Lisovskyi

JHEP 03 (2022) 109

Each of those three contributions is treated separately in the analysis.

rate ~ 10^{-10} for B_s^0 but mind $\mathscr{B}(J/\psi \to \mu\mu)$ Related to $B_s^0 \rightarrow J/\psi\gamma$ for which LHCb limit is <7.3e-6

"huge" compared to the rest: effective BF~1.7e-8, used as a normalisation mode

Other possible contributions e.g. $B_s^0 \rightarrow \phi(\mu\mu)\mu\mu$ or $B_s^0 \rightarrow \phi(\mu\mu)\phi(\mu\mu)$ are not considered, below experimental sensitivity

B to four leptons: BSM?

- Essence of the proposed BSM scenarios: $B \rightarrow aa^{(\prime)} \rightarrow 4\mu$
 - Several models on the market: some inspired by the $(g-2)_u$ or R_K which were superstars back 5 years ago; others are
- A selection of models: (don't ask me about it please)
 - Light scalars and heavy vectors (Chala et al, Eur.Phys.J.C 79 (2019) 5, 431)
 - Hierarchical new physics with multiple scalars (Ramos et al, <u>JHEP 11 (2022) 027</u>)
 - Sglodstino pair production scalar+pseudoscalar (Demidov et al, <u>Phys.Rev.D 85 (2012) 077701</u>)
 - HyperCP anomaly...
 - apologies for missing your favourite model here
- Note: experimental signature is different if the BSM particle is long-lived: not covered by any published search yet.

Vitalii Lisovskyi

B to four leptons: experimentalist's approach

Vitalii Lisovskyi

Tree-level

Vitalii Lisovskyi

- Require one dimuon combination around the ϕ and one around the J/ψ
- The yield is quite small (~220 evts) due to low $\mathscr{B}(\phi \to \mu \mu)$

I will not bore you with selection details: they are quite straightforward in this analysis.

Muon ID + a standard multivariate selection against accidental combinations do all the job.

Important to know:

LHCb muon system requires p > 3 GeV for each muon!

JHEP 03 (2022) 109

Wexchange

- Require one dimuon combination around the J/ψ , veto the ϕ
- Misidentified $B \rightarrow J/\psi hh'$ could contribute: tight muon ID applied
- No significant signals, upper limits set at 95% CL:

$$\mathcal{B}(B_s^0 \to J/\psi(\mu^+\mu^-)\mu^+\mu^-) < 2.6 \times 10^{-9}$$

$$\mathcal{B}(B^0 \to J/\psi(\mu^+\mu^-)\mu^+\mu^-) < 1.0 \times 10^{-9}$$

(this includes $\mathscr{B}(J/\psi \to \mu^+ \mu^-)$)

JHEP 03 (2022) 109

• Veto the ϕ , J/ψ , $\psi(2S)$ in any dimuon combination and consider all the rest

• No significant signals, either, upper limits set at 95% CL:

$$\mathscr{B}(B_s^0 \to \mu^+ \mu^- \mu^+ \mu^-) < 8.6 \times 10^{-10} \text{ factor <10}$$
$$\mathscr{B}(B^0 \to \mu^+ \mu^- \mu^+ \mu^-) < 1.8 \times 10^{-10}$$

- Upper limits also set on a specific NP model: a pair of 1-GeV scalar (otherwise does not pass the phi veto)
- See also the Run 1 paper <u>JHEP 03 (2017) 001</u> for limits on sgoldstino scenarios

JHEP 03 (2022) 109

Decay model

- For the nonresonant $B_s^0 \rightarrow \mu^+ \mu^- \mu^+ \mu^-$ decays, the phase-space model is used
- But: muon reconstruction efficiencies depend on muon momenta
 - If there is a photon pole = more soft muons = lower efficiency!
- 20% systematic uncertainty due to efficiency variations across the phase-space
 - Can actually be an important effect if we saw the signal, ok for an upper limit
- A theory+experiment initiative at TU Dortmund (Stamou, Wagner, Albrecht et al) to develop a reliable SM prediction and an EvtGen model targeting the Run3 analysis

JHEP 03 (2022) 109

B to four leptons: what next?

- Run 3 data can actually help to reach the SM sensitivity goalpost for $B_s^0 \rightarrow \mu \mu \mu \mu \mu!$
 - Reliable SM predictions can be useful ;)
- Straightforward next steps (planned/ongoing at LHCb):
 - $B_s^0 \rightarrow \mu\mu ee$: interesting interplay with the $B_s^0 \rightarrow \mu\mu\gamma$ at very low q^2 (+ photon conversions in the material).
 - $B^+ \rightarrow K^+ \mu \mu \mu \mu$: larger B^+ production rate helps
 - $B \rightarrow \mu \mu \mu \mu (K)$ with long-lived intermediate particles decaying to dimuons
 - Six muons, anyone? [see <u>Phys.Rev.D 100 (2019) 11, 115015</u>]

An experimentalist's digression

- I mentioned $B^+ \rightarrow K^+ \mu \mu \mu \mu$.
- What kind of resonant contributions does one expect here?
 - $B^+ \to K^+ J/\psi(\mu\mu)\mu\mu$ with all the possible $B^+ \to K^+(\chi_c \to J/\psi(\mu\mu)\mu\mu)$, $B^+ \rightarrow K^+ J/\psi(\mu\mu) V(\mu\mu)$ etc
 - $B^+ \to K^+ J/\psi(\mu\mu\mu\mu)$
- At this point we realised that the decay $J/\psi \rightarrow \mu\mu\mu\mu$ was not seen yet!
- Let's talk about it.

J/w decays to four leptons

• Final-state radiation of a virtual photon from the $J/\psi \rightarrow \mu^+\mu^-$ or $J/\psi \rightarrow e^+e^-$

- Initial-state radiation process suppressed by C parity: $J/\psi \rightarrow \gamma \gamma$ is forbidden
 - strictly 0 for on-shell photons (Landau-Yang theorem) • is this still true for virtual photons?
- No significant contribution from intermediate vector resonances: $J/\psi \rightarrow VV \rightarrow 4\mu$ violates C parity
- A clean FSR process with future applications and sensitivity to possible BSM $J/\psi \rightarrow XX \rightarrow 4\mu$ scenarios

Observing the $J/\psi \rightarrow \mu^+ \mu^- \mu^+ \mu^-$ signal would allow to validate the simulated description of the $\gamma^* \rightarrow \mu^+ \mu^-$.

Vitalii Lisovskyi

J/w decays to four leptons

• Final-state radiation of a virtual photon from the $J/\psi \rightarrow \mu^+\mu^-$ or $J/\psi \rightarrow e^+e^-$

• Predicted LO-QED decay rates [Chen et al., <u>PRD 104 (2021) 9, 094023</u>]:

Decay	$\mathcal{B}(4\ell)/\mathcal{B}(2\ell)$	$\mathscr{B}(4\mathscr{C})$	• Vir
$J/\psi ightarrow e^+e^-e^+e^-$	8.85×10^{-4}	5.288×10^{-5}	• Ra
$J/\psi ightarrow e^+ e^- \mu^+ \mu^-$	6.31×10^{-4}	3.763×10^{-5}	m_e
$J/\psi ightarrow \mu^+ \mu^- \mu^+ \mu^-$	0.163×10^{-4}	0.0974×10^{-5}	

size of QED/QCD uncertainties unclear

Vitalii Lisovskyi

• Ratio of decay rates to 4 leptons / 2 leptons can be predicted in QED

- rtual photon \rightarrow decay rates falls with $\sim 1/m_{\ell^+\ell^-}^2$
- Ite larger for e^+e^- modes: enhancement at low $e_{e^+e^-}$ (below the dimuon threshold)
- entical leptons create interference

Can we trust these predictions?

The BES III saga

- The BES III experiment studied four-lepton Jpsi decays [arXiv:2111.13881]
- Original arXiv submission (late 2021) claimed a discrepancy with the SM

Using a data sample of $4.481 \times 10^8 \psi(3686)$ events collected with the BESIII detector, we report the first observation of the four-lepton-decays $J/\psi \to e^+e^-e^+e^-$ and $J/\psi \to e^+e^-\mu^+\mu^-$ utilizing the process $\psi(3686) \rightarrow \pi^+\pi^- J/\psi$. The branching fractions are determined to be $[4.32\pm0.26 \text{ (stat)}\pm$ $0.19 \text{ (syst)} \times 10^{-5} \text{ and } [2.45 \pm 0.21 \text{ (stat)} \pm 0.10 \text{ (syst)}] \times 10^{-5}, \text{ respectively. The results deviate}$ from theoretical predictions, by 2.8 and 5.2 σ , respectively. No significant signal is observed for $J/\psi \to \mu^+\mu^-\mu^+\mu^-$, and an upper limit on the branching fraction is set at 1.6×10^{-6} at the 90% confidence level. A CP asymmetry observable is constructed for the first two channels, which is measured to be $(-0.019 \pm 0.067 \pm 0.025)$ and $(-0.016 \pm 0.081 \pm 0.003)$, respectively. No evidence for CP violation is observed in this process.

- This version has never been published in a journal
- A corrected version (Sept 2023, v3 on arXiv): good agreement with the SM

An LHCb measurement of $J/\psi \rightarrow \mu^+ \mu^- \mu^+ \mu^-$ would help to complete the puzzle

Vitalii Lisovskyi

Using a data sample of $4.481 \times 10^8 \psi(3686)$ events collected with the BESIII detector, we report the first observation of the four-lepton-decays $J/\psi \to e^+e^-e^+e^-$ and $J/\psi \to e^+e^-\mu^+\mu^-$ utilizing the process $\psi(3686) \rightarrow \pi^+ \pi^- J/\psi$. The branching fractions are determined to be $[5.48 \pm 0.31 \text{ (stat)} \pm$ $(0.45 \text{ (syst)}] \times 10^{-5}$ and $[3.53 \pm 0.22 \text{ (stat)} \pm 0.13 \text{ (syst)}] \times 10^{-5}$, respectively. The results are consistent with theoretical predictions. No significant signal is observed for $J/\psi \to \mu^+ \mu^- \mu^+ \mu^-$, and an upper limit on the branching fraction is set at 1.6×10^{-6} at the 90% confidence level. A CP asymmetry observable is constructed for the first two channels, which is measured to be $(-0.012 \pm 0.054 \pm 0.010)$ and $(0.062 \pm 0.059 \pm 0.006)$, respectively. No evidence for CP violation is observed in this process.

Production of J/ψ mesons at LHCb

Vitalii Lisovskyi

Efficiency dependence

The LHCb reconstruction+preselection efficiency as a function of kinematics: (The *total* efficiency trend will be even more complicated)

Even more important for $J/\psi \rightarrow e^+e^-\mu^+\mu^-$ (photon pole)

Summary

- Multilepton decays await to be explored, many possible surprises
- LHCb Run3 data would be interesting, as well as data from other experiments
 - I did not talk about: recent CMS result on $\eta \rightarrow 4\mu$ (twophoton diagram = not FSR), similar BES results...
- Theory guidance would be helpful
 - Reliable simulation models (EvtGen) are crucial, large biases possible otherwise!
 - Measured BF values depend on the theory assumptions in LHCb simulation

https://www.smbc-comics.com/?id=2088

