

Search for the $B_s^0 \rightarrow \mu^+ \mu^- \gamma$ INTENSITY decay at LHCb frontier

Workshop on radiative leptonic B decays Marseille 29/02/2024

Irene Bachiller on behalf of the LHCb Collaboration LAPP, CNRS, France

AU SERVICE DE LA SCIENCE

Rare and radiative *b***-hadron decays**

The $b \to s\gamma$ transition is a flavour-changing neutral-current process characterised by the emission of a photon (?). Powerful tool to test the SM, with access to branching fractions, angular and charge-parity-violating observables: Possibility of testing the presence of right-handed photons (highly suppressed in the SM).

Some LHCb's results on radiative decays:

 \otimes Measurement of CP-Violating and Mixing-Induced Observables in $B_s^0 \rightarrow \phi \gamma$ decays [Phys.Rev.Lett.123,081802] Solution Measurement of the photon polarisation in $\Lambda_h^0 \to \Lambda \gamma$ decays [Phys.Rev.D105(2022)L051104] Search for the radiative $\Xi_h^- \to \Xi^- \gamma \text{ decay} [\text{JHEP01 (2022) 069}]$

Differential Branching Fractions

SM predictions. Large hadronic form factors uncertainties (20-30%). Data. LHCb results. **♦**

Irene Bachiller - Search for the $B_s^0 \rightarrow \mu^+ \mu^- \gamma$ decay at LHCb

Tensions between experimental result and SM predictions.

 $|B_s^0 \to \mu^+ \mu^- \gamma \text{ vs. } B_s^0 \to \mu^+ \mu^-|$

0

 $B_s^0 \to \mu^+ \mu^- \gamma$ decay is sensitive to a larger set of Wilson coefficients (C_7, C_9, C_{10}) than $B_s^0 \to \mu^+ \mu^-$ (C_{10}). The photon lifts the helicity suppression making $\mathscr{B}(B_s^0 \to \mu^+ \mu^-) \sim \mathscr{B}(B_s^0 \to \mu^+ \mu^- \gamma)$. Larger theoretical uncertainties due to the form factors of the $B_s^0 \rightarrow \gamma$ transition. Worse mass resolution due to the photon reconstruction.

Irene Bachiller - Search for the $B_s^0 \rightarrow \mu^+ \mu^- \gamma$ decay at LHCb

Phys.Rev	v. D97, 053007(20)1
Physics	Letters B 521	(
JHEP 12	(2021) 008	
JHEP 11	(2017) 184	

- Electromagnetic-dipole operators
- Four-fermion operators
- Any four-quark operator

Search for the $B_s^0 \rightarrow \mu^+ \mu^- \gamma$ decay at LHCb Irene Bachiller

$B_s^0 \rightarrow \mu^+ \mu^- \gamma$ theory predictions

Different theoretical approaches show different estimations of the $\mathscr{B}(B_s^0 \to \mu^+ \mu^- \gamma)$. A measurement of the $\mathscr{B}(B_s^0 \to \mu^+ \mu^- \gamma)$ would test the SM. But an upper limit could also clarify the validity of the different theory approaches.

Two complementary methods

Indirect no photon reconstruction, probing this decay as a background of the $B_s^0 \rightarrow \mu^+ \mu^-$ process:

 $\mathscr{B}(B_s^0 \to \mu^+ \mu^- \gamma) < 2.0 \times 10^{-9}$ at 95% C.L. for $m(\mu\mu) > 4.9$ GeV/c²

See next presentation by Camille Normand

Direct with photon reconstruction, presented today. First time!

Photon reconstruction worsen the resolution.

And first study at low q2!

Methods

LHCb-PAPER-2023-045 In preparation

Méril Reboud CERN-THESIS-2020-303

LHCb detector for b-hadron decays

The LHC has a large cross section of *b* and *c* hadrons:

•
$$\sigma(b\bar{b})_{7\ TeV} = 295\ \mu b$$

•
$$\sigma(b\bar{b})_{13\ TeV} = 590\ \mu b$$

LHCb designed as forward spectrometer to focus on 4 *bb* production:

Search for the $B_s^0 \rightarrow \mu^+ \mu^- \gamma$ decay at LHCb Irene Bachiller -

Int.J.Mod.Phys.A30, 1530022 (2015) CERN-LHCC-2003-030 Muon reconstruction Particle identification ECAL HCAL SPD/PS M3 M5 Vertex -250mrad M2 reconstruction RICH2 M1 Magnet RICH1 TT Vertex Locato 當備 静静 20m 10m 5m Tracking Electromagnetic E Hadronic E measurement measurement

- **Data:** proton-proton collisions recorded by LHCb during Run 2 (5.4 fb⁻¹).
- **Signal simulation:** as theory input the differential branching ratio computed in D.Melikhov N.Nikitin [Phys.Rev.D70(2004)114028]. The implementation of this result is detailed in N.Nikitin, A. Popov, D.V. Savrina [LHCb-INT-2011-011]. + PHOTOS ON for final state radiation.
- **Blind analysis:** to keep the analysis unbiased, the data on the signal mass region is not seen until the full strategy is defined.

If signal is found... measure $\mathscr{B}(B_s^0 \to \mu^+ \mu^- \gamma)$ and compare with the SM predictions. If no signal is seen... compute $\mathscr{B}(B_s^0 \to \mu^+ \mu^- \gamma)$ upper limit using CLs method.

Strategy

 $dB(B_s^0 \rightarrow \mu^+\mu^-\gamma)/dq^2 [GeV^{-2}c^4]$

Ð

0

Three q² regions: Bin I: low-q² Bin II: middle-q² Bin III: high-q²

Additionally, Bin I is also studied with a veto on the ϕ -resonance mass: $m(\mu^+\mu^-) = [989.6, 1073.4] \text{MeV/c}^2$ Bin I ϕ -veto: low-q² without ϕ region

Irene Bachiller - Search for the $B_s^0 \rightarrow \mu^+ \mu^- \gamma$ decay at LHCb

	Ι	II	III
V^2/c^4]	$[4 m_{\mu}^2, 2.89]$	[2.89, 8.29]	$[15.37, m_{B_*^0}^2]$
$^{-}) [\text{GeV} / c^2]$	$[2 m_{\mu}, 1.70]$	[1.70, 2.88]	$[3.92, m_{B_{*}^{0}}]$
$\mathcal{B}(B^0_s \to \mu^+ \mu^- \gamma) \ [8]$	82 ± 15	2.54 ± 0.34	9.1 ± 1.1
n of $B_s^0 \rightarrow \mu^+ \mu^- \gamma$	87%	2.7%	9.8%

Normalisation channel

- A well know decay channel
- High statistics
- Good selection efficiency
- Similar final state to the signal: allows uncertainties cancelations
- Chosen channel:

$$B_s^0 \to J/\Psi(\to \mu\mu) \eta(\to$$

Signal branching fraction to be calculated as:

$$\mathcal{B}(B_s^0 \to \mu^+ \mu^- \gamma) = \frac{\mathcal{B}_{\text{norm}}}{N_{\text{norm}}} \times \frac{\epsilon_{\text{norm}}}{\epsilon_{\text{sig}}} \times N_{\text{sig}}$$

Irene Bachiller - Search for the $B_s^0 \rightarrow \mu^+ \mu^- \gamma$ decay at LHCb

Strategy

Control channel

- To check the agreement between data and simulation.
- A well know decay channel.
- Good selection efficiency.
- Similar kinematics: three body decay and low- p_T photons.
- Chosen channel:

 $B_s^0 \to \Phi(\to K^+ K^-) \gamma$

Strategy

After trigger and basic preselection, $p_T(\gamma) > 1000 \text{MeV}/c^2$, candidates must pass a requirement in two MLP classifiers:

First MLP

Aim: reduce the combinatorial background using geometrical and kinematic variables.

Trained in data mass side-bands and background, and signal simulation.

Second MLP

Aim: reduce other backgrounds, exploiting the fact that the signal objects are isolated.

Trained with samples after passing the first MLP.

Optimised cut for each q² bin.

 $V\bar{\nu}$

 μ^{-}

 D^{-}

Double misID

Double misidentification of kaons or pions as muons. Such as:

$$B_s^0 \to \phi(\to KK)\gamma$$

 $B^0 \to K^{*0}(\to \pi K)\gamma$

Probability of ~10⁻⁴ of double misID

Partially reconstructed

When one particle of the final state is not reconstructed (neutrinos, or by an inefficiency).

A broad peak outside the mass region is expected.

Other backgrounds were studied and estimated negligible: $B^0 \to \mu\mu\gamma$, $B^0 \to \pi^+\pi^-\pi^0$, $B^{*0} \to B^0\gamma$, $\Lambda_b \to pK\gamma$, etc.

Irene Bachiller - Search for the $B_s^0 \rightarrow \mu^+ \mu^- \gamma$ decay at LHCb

Studied with simulation

$$B^0 \to \mu\mu\pi^0$$

If one γ is not reconstructed or both γ 's are merge and reconstructed in one.

Low contribution but peaking very close to the signal.

$$B_{(s)}^{0} \rightarrow \mu \mu \eta$$
By same reasons than
 $B^{0} \rightarrow \mu \mu \pi^{0}$.
Main peaking background in the
signal region, but broader than
 $B^{0} \rightarrow \mu \mu \pi^{0}$.
 $D = \mu^{0} \mu^{*} \eta$

13

Search for the $B_s^0 \rightarrow \mu^+ \mu^- \gamma$ decay at LHCb Irene Bachiller

Mass fit

The measured $\mathscr{B}(B_s^0 \to \mu^+ \mu^- \gamma)$ is not statistically significant in any of the q² regions.

They are consistent with the backgroundonly hypothesis at $< 1\sigma$ level.

${\cal B}(B^0_s \! ightarrow \mu^+ \mu^- \gamma)_{ m I}$	=	$(1.34 \pm 1.60 \pm 0.28) \times 1$
${\cal B}(B^0_s\! ightarrow\mu^+\mu^-\gamma)_{ m II}$	=	$(0.76 \pm 3.55 \pm 0.30) \times 1$
${\cal B}(B^0_s\! ightarrow\mu^+\mu^-\gamma)_{ m III}$	=	$(-2.55 \pm 2.25 \pm 0.41) \times$
${\cal B}(B^0_s \! ightarrow \mu^+ \mu^- \gamma)_{{ m I}, \ \phi \ { m veto}}$	=	$(0.72 \pm 1.56 \pm 0.29) \times 1$

stat.±syst.

Dominated by statistical uncertainty.

Irene Bachiller - Search for the $B_s^0 \rightarrow \mu^+ \mu^- \gamma$ decay at LHCb

As no significant excess is observed, upper limits are set on $\mathscr{B}(B_s^0 \to \mu^+ \mu^- \gamma)$ using the CL method.

Indirect search from $B_s^0 \rightarrow \mu^+ \mu^-$ decay at LHCb, limit at 95% CL [Phys.Rev.D105(2022)1] Single-pole parametrisation [JHEP11 (2017) 184] Multipole parametrisation [Phys.Rev.D97 (2018) 053007] Soft-collinear effective theory [JHEP148 (2020) 12] Light-cone sum rules [JHEP8 (2021) 12]

Overview

Lattice QCD with heavy quark effective theory, assuming vector meson dominance [JHEP10 (2023) 102, JHEP7 (2023) 112] Lattice QCD with heavy quark effective theory extrapolation [arXiv:2402.03262]

The first direct, and first low q² search, of the $B_s^0 \rightarrow \mu^+ \mu^- \gamma$ decay:

using Run 2 data recorded by the LHCb detector.

LHCb-PAPER-2023-045 In preparation

Méril Reboud CERN-THESIS-2020-303

Thank you!

Conclusions

