# $B_s ightarrow \mu^+ \mu^- \gamma$ at large $q^2$ from lattice QCD

Giuseppe Gagliardi, INFN Sezione di Roma Tre

In collaboration with:

R. Frezzotti, V. Lubicz, G. Martinelli, C.T. Sachrajda, F. Sanfilippo, S. Simula, N. Tantalo

[pre-print: arXiv:2402.03262]

Workshop on radiative leptonic B decays, 29 February 2024, Marseille.



#### Motivations

Why 
$$B_s 
ightarrow \mu^+ \mu^- \gamma$$
 at large  $q^2$  ?

- The  $B_s \to \mu^+ \mu^- \gamma$  decay allows for a new test of the SM predictions in  $b \to s$  FCNC transitions.
- Despite the O(α<sub>em</sub>)-suppression w.r.t. the widely studied B<sub>s</sub> → μ<sup>+</sup>μ<sup>-</sup>, removal of helicity-suppression makes the two decay rates comparable in magnitude.
- At very high √q<sup>2</sup> = invariant mass of the μ<sup>+</sup>μ<sup>-</sup>, the contributions from penguin operators appearing in the weak effective-theory, which are difficult to compute on the lattice, are suppressed [Guadagnoli, Reboud, Zwicky, JHEP '17] √.

In this talk I will present the first, ( $\simeq$ ) first-principles lattice QCD calculation of the  $B_s \rightarrow \mu^+ \mu^- \gamma$  decay rate for  $q^2 \gtrsim (4.2 \text{ GeV})^2$ .

#### The effective weak-Hamiltonian

The low-energy effective theory describing the  $b \to s$  transition, neglecting doubly Cabibbo-suppressed terms, is

$$\begin{split} \mathcal{H}_{\text{eff}}^{b \to s} &= 2\sqrt{2}G_F V_{tb} V_{ts}^* \left[ \sum_{i=1,2} C_i(\mu) \mathcal{O}_i^c + \sum_{i=3}^6 C_i(\mu) \mathcal{O}_i + \frac{\alpha_{\text{em}}}{4\pi} \sum_{i=7}^{10} C_i(\mu) \mathcal{O}_i \right] \\ \text{current-current:} \quad \mathcal{O}_1^c &= \left( \bar{s}_i \gamma^\mu P_L c_j \right) \left( \bar{c}_j \gamma^\mu P_L b_i \right) , \qquad \mathcal{O}_2^c &= \left( \bar{s} \gamma^\mu P_L c \right) \left( \bar{c} \gamma^\mu P_L b \right) , \\ \text{ph./chromo. penguins:} \quad \mathcal{O}_7 &= -\frac{m_b}{e} \bar{s} \sigma^{\mu\nu} F_{\mu\nu} P_R b , \qquad \mathcal{O}_8 &= -\frac{g_s m_b}{4\pi \alpha_{\text{em}}} \bar{s} \sigma^{\mu\nu} G_{\mu\nu} P_R b , \\ \text{semileptonic:} \quad \mathcal{O}_9 &= \left( \bar{s} \gamma^\mu P_L b \right) \left( \bar{\mu} \gamma_\mu \mu \right) , \qquad \mathcal{O}_{10} &= \left( \bar{s} \gamma^\mu P_L b \right) \left( \bar{\mu} \gamma_\mu \gamma^5 \mu \right) \end{split}$$

- The amplitude  ${\cal A}$  is the sandwich of  ${\cal H}^{b\to s}_{\rm eff}$  between initial and final states

$$\mathcal{A}[\bar{B}_s \to \mu^+ \mu^- \gamma] = \langle \gamma(\mathbf{k}, \varepsilon) \mu^+(p_1) \mu^-(p_2) | - \mathcal{H}_{\text{eff}}^{b \to s} | \bar{B}_s(\mathbf{p}) \rangle_{\text{QCD+QED}} ,$$

• To lowest-order in  $\mathcal{O}(\alpha_{em})$  [Beneke et al, EPJC 2011]:

$$\mathcal{A}[\bar{B}_s \to \mu^+ \mu^- \gamma] = -e \frac{\alpha_{\rm em}}{\sqrt{2}\pi} V_{tb} V_{ts}^* \varepsilon_{\mu}^* \Big[ \sum_{i=1}^9 C_i \overset{\rm NP-QCD}{H_i^{\mu\nu}} L_{V\nu} + C_{10} \left( \overset{\rm NP-QCD}{H_{10}^{\mu\nu}} L_{A\nu} - \underbrace{\frac{i}{2} f_{B_s} L_A^{\mu\nu} p_{\nu}}_{2} \right) \Big]_2$$

The non-perturbative information is encoded in the hadronic tensors  $H_i^{\mu\nu}$ , which can be grouped in three categories:

Contributions from semileptonic operators:

$$\begin{split} H_{9}^{\mu\nu}(p,k) &= H_{10}^{\mu\nu}(p,k) = i \int d^{4}y \ e^{iky} \ \hat{\mathrm{T}}\langle 0| \left[ \bar{s}\gamma^{\nu}P_{L}b \right](0) J_{\mathrm{em}}^{\mu}(y) |\bar{B}_{s}(p) \rangle \\ &= -i \left[ g^{\mu\nu}(k \cdot q) - q^{\mu}k^{\nu} \right] \frac{F_{A}}{2m_{B_{s}}} + \varepsilon^{\mu\nu\rho\sigma}k_{\rho}q_{\sigma}\frac{F_{V}}{2m_{B_{s}}} \end{split}$$

• Parametrized by vector and axial form factors  $F_V(x_\gamma)$  and  $F_A(x_\gamma)$  $[x_\gamma \equiv 2E_\gamma/m_{B_s}]$ .  $E_\gamma$  is the photon energy in the rest-frame of the  $\bar{B}_s$ .





The non-perturbative information is encoded in the hadronic tensors  $H_i^{\mu\nu}$ , which can be grouped in three categories:

Contributions from photon-penguin operator (A-type):

$$H^{\mu\nu}_{7A}(p,k) = i \frac{2m_b}{q^2} \int d^4 y \ e^{iky} \ \hat{T} \langle 0| \left[ -i\bar{s}\sigma^{\nu\rho}q_{\rho}P_R b \right](0) J^{\mu}_{\rm em}(y) |\bar{B}_s(p)\rangle$$

$$= -i \left[ g^{\mu\nu} (k \cdot q) - q^{\mu} k^{\nu} \right] \frac{F_{TA} m_b}{q^2} + \varepsilon^{\mu\nu\rho\sigma} k_{\rho} q_{\sigma} \frac{F_{TV} m_b}{q^2}$$

• Parametrized by tensor and axial-tensor form factors  $F_{TV}(x_{\gamma})$  and  $F_{TA}(x_{\gamma})$ . Algebraic constraint:  $F_{TV}(1) = F_{TA}(1)$ .





The non-perturbative information is encoded in the hadronic tensors  $H_i^{\mu\nu}$ , which can be grouped in three categories:

Contributions from photon-penguin operator (*B*-type):

$$H_{7B}^{\mu\nu}(p,k) = i\frac{2m_b}{q^2} \int d^4y \ e^{iqy} \ \hat{T}\langle 0| \left[ -i\bar{s}\sigma^{\mu\rho}k_{\rho}P_Rb \right](0) J_{\rm em}^{\nu}(y) |\bar{B}_s(p)\rangle$$

$$= -i \left[ g^{\mu\nu} (k \cdot q) - q^{\mu} k^{\nu} \right] \frac{\bar{F}_{TA} m_b}{q^2} + \varepsilon^{\mu\nu\rho\sigma} k_\rho q_\sigma \frac{\bar{F}_{TV} m_b}{q^2}$$

• Parametrized by a single form factor  $\bar{F}_T(x_\gamma) = \bar{F}_{TV}(x_\gamma) = \bar{F}_{TA}(x_\gamma)$ .





The non-perturbative information is encoded in the hadronic tensors  $H_i^{\mu\nu}$ , which can be grouped in three categories:

Contributions from four-quark and chromomagnetic operators:

$$H_{i=1-6,8}^{\mu\nu}(p,k) = \frac{(4\pi)^2}{q^2} \int d^4y \ d^4x \ e^{iky} e^{iqx} \ \hat{\mathrm{T}}\langle 0|J_{\mathrm{em}}^{\mu}(y)J_{\mathrm{em}}^{\nu}(x)\mathcal{O}_i(0)|\bar{B}_s(\boldsymbol{p})\rangle$$

- In the high- $q^2$  region, they are formally of higher-order in the  $1/m_b$  expansion [Guadagnoli, Reboud, Zwicky, JHEP '17].
- We did not compute them, but have future plans to do so.
- In the evaluation of the branching fractions we only included a phenomenological description of the allegedly dominant contribution from the following charming-penguin diagram:



This contribution is dominated by vector  $c\bar{c}$  resonances. Some of them overlap with the  $q^2$  region we consider. A description of our parameterization will come later.

#### The local form factors on the lattice

We computed on the lattice the local form factors  $F_V, F_A, F_{TV}, F_{TA}$  and  $\bar{F}_T$  for  $x_\gamma \in [0.1:0.4] \implies 4.16 \text{ GeV} < \sqrt{q^2} < 5.1 \text{ GeV}$ 

Two main sources of systematics on the lattice, which must be controlled:

Continuum-limit extrapolation (a → 0)...



- ...which we handle by simulating at four values of the lattice spacing  $a \in [0.057 : 0.09]$  fm using configurations produced by the ETM Collaboration.
- Extrapolation to the physical  $B_s$  meson mass, which we handle by simulating at five different values of the heavy-strange meson mass  $m_{H_s} \in [m_{D_s} : 2m_{D_s}]...$
- ...and then performing the extrapolation  $m_{H_s} \rightarrow m_{B_s}$  via pole-like+HQET scaling relations. On current lattices in fact we cannot simulate directly the  $B_s$  meson, which is too heavy.

#### Sketch of the lattice calculation of the form factors

Our lattice input is (for simplicity I discuss here only the case of  $F_V$ ):  $B_V^{\mu\nu}(t,x_\gamma) = \int dt_y \, d^3y \, d^3x \, e^{E_\gamma t_y} \, e^{-iky} \, \hat{T}\langle 0| \underbrace{J_V^{\nu}}_{\bar{s}\gamma^{\nu}b}(t,0) J_{em}^{\mu}(t_y,y) \phi_{B_s}^{\dagger}(0,x) |0\rangle$ 



We neglect the quark disconnected diagram. It vanishes exactly in the SU(3)-symmetric limit and for  $m_c \rightarrow \infty$ . This is the electroquenched approximation.

- $\phi_{B_s}^{\dagger}$  is an interpolating operator having the quantum numbers to create a  $\bar{B}_s$ .
- After amputating external states one has

$$R_V^{\mu\nu}(t,x_\gamma) \equiv \frac{2m_{B_s}}{e^{-t(m_{B_s}-E_\gamma)} \langle \bar{B}_s(\mathbf{0}) | \phi_{B_s}^{\dagger}(\mathbf{0}) | 0 \rangle} B_V^{\mu\nu}(t,x_\gamma)$$

• We always inject photon momentum k in lattice direction  $\hat{z}$ . In this setup:

$$R_V(t, x_\gamma) \equiv \frac{1}{k_z} R_V^{12}(t, x_\gamma) \xrightarrow[0 \ll t \ll T/2]{} F_V(x_\gamma) \qquad \checkmark$$

• Similar estimators for  $F_A, F_{TV}$  and  $F_{TA}$ .  $\overline{F}_T$  analysis more complex [Backup].

#### Extraction of the form factors from lattice data

Illustrative example on the finest lattice spacing  $a\sim 0.057~{\rm fm}$  for  $x_{\gamma}=0.2$  and  $m_h/m_c=2.$ 



- We analyze separately the two contributions corresponding to the emission of the real photon from the strange or the heavy quark.
- $x_{\gamma} = 2E_{\gamma}/m_{H_s}$  kept fixed increasing the heavy-meson mass  $(E_{\gamma} \propto m_{H_s})$ .

### Continuum limit extrapolation

We perform the continuum-limit extrapolation at fixed  $m_{H_s}$  and  $x_{\gamma}$ 



Systematic errors evaluated performing fits using only the three finest lattice spacings.

Results obtained using three or four lattice spacings combined using AIC.

#### Extrapolation to the physical $B_s$ meson mass (I)

After continuum extrapolation, the most delicate task is to extrapolate the form factors, computed for  $m_{H_s} \in [m_{D_s}: 2m_{D_s}]$ , to  $m_{B_s} \sim 5.367$  GeV.

• Elegant scaling laws were derived in the limit of large photon energies  $E_{\gamma}$  and large  $m_{H_s}$  [Beneke et al, EPJC 2011, JHEP 2020]. Up to  $\mathcal{O}(E_{\gamma}^{-1}, m_{H_s}^{-1})$  one has

$$\begin{split} \frac{F_V(x_{\gamma}, m_{H_s})}{f_{H_s}} &= \frac{|q_s|}{x_{\gamma}} \left( \frac{R(E_{\gamma}, \mu)}{\lambda_B(\mu)} + \xi(x_{\gamma}, m_{H_s}) + \frac{1}{m_{H_s} x_{\gamma}} + \frac{|q_b|}{|q_s|} \frac{1}{m_h} \right) \\ \frac{F_A(x_{\gamma}, m_{H_s})}{f_{H_s}} &= \frac{|q_s|}{x_{\gamma}} \left( \frac{R(E_{\gamma}, \mu)}{\lambda_B(\mu)} + \xi(x_{\gamma}, m_{H_s}) - \frac{1}{m_{H_s} x_{\gamma}} - \frac{|q_b|}{|q_s|} \frac{1}{m_h} \right) \\ \frac{F_{TV}(x_{\gamma}, m_{H_s}, \mu)}{f_{H_s}} &= \frac{|q_s|}{x_{\gamma}} \left( \frac{R_T(E_{\gamma}, \mu)}{\lambda_B(\mu)} + \xi(x_{\gamma}, m_{H_s}) + \frac{1 - x_{\gamma}}{m_{H_s} x_{\gamma}} + \frac{|q_b|}{|q_s|} \frac{1}{m_{H_s}} \right) \\ \frac{F_{TA}(x_{\gamma}, m_{H_s}, \mu)}{f_{H_s}} &= \frac{|q_s|}{x_{\gamma}} \left( \frac{R_T(E_{\gamma}, \mu)}{\lambda_B(\mu)} + \xi(x_{\gamma}, m_{H_s}) - \frac{1 - x_{\gamma}}{m_{H_s} x_{\gamma}} + \frac{|q_b|}{|q_s|} \frac{1}{m_{H_s}} \right) \end{split}$$

- $\lambda_B$  is 1st inverse-moment of  $B_s$  LCDA.  $R, R_T$  are radiative corrections.  $\xi$  is a power-suppressed term  $\propto 1/E_\gamma, 1/m_{H_s}, f_{H_s}$  the decay constant of  $H_s$  meson.
- Photon emission from **b** ( $\propto |q_b|$ ) power-suppressed w.r.t. to emission from **s**.
- Tensor form factors are scale and scheme dependent. On the lattice we obtained them in  $\overline{\rm MS}$  scheme at  $\mu = 5~{\rm GeV}.$

#### Extrapolation to the physical $B_s$ meson mass (II)

- The scaling relations discussed above are only valid for very energetic photons.
- While we have  $E_{\gamma} \propto m_{H_s}$ , for small  $x_{\gamma} = 2E_{\gamma}/m_{H_s}$  and not very large  $m_{H_s}$ , there are sizable corrections to the previous relations.
- Assuming vector-meson-dominance (VMD) one has  $(W = \{V, A, TV, TA\})$

$$\frac{F_W(x_{\gamma}, m_{H_s})}{f_{H_s}} \propto \frac{1}{\sqrt{r_W^2 + \frac{x_{\gamma}^2}{4} + \frac{x_{\gamma}}{2} - 1}} + \mathcal{O}(\frac{1}{E_{\gamma}}, \frac{1}{m_{H_s}})$$
$$r_V = r_{TV} = \frac{m_{H_s^*}}{m_{H_s}}, \qquad r_A = r_{TA} = \frac{m_{H_{s1}}}{m_{H_s}}$$

- $H_s^*$  and  $H_{s1}$  are respectively the ground state  $J^P = 1^-$  and  $J^P = 1^+$  mesons, made of an heavy quark and a strange anti-quark.
- In the static limit  $m_{H_s} \to \infty$  one has  $r_W = 1$  and, for non-zero  $x_{\gamma}$ , the LO scaling laws  $F_W \propto f_{H_s}/x_{\gamma}$  are recovered.
- However, away from the static limit and for small(ish)  $x_{\gamma}$  the quasi-pole structure generates large corrections to the LO scaling laws...

#### Extrapolation to the physical $B_s$ meson mass (III)

Making use of the HQET scaling laws:

$$\begin{split} m_{\bar{H}_s^*}^2 &- m_{\bar{H}_s}^2 = 2\lambda_2 + \mathcal{O}\left(\frac{1}{m_h}\right) , \qquad \lambda_2 \simeq 0.24 \text{ GeV}^2 \\ m_{\bar{H}_{s1}} &- m_{\bar{H}_s} = \Lambda_1 + \mathcal{O}\left(\frac{1}{m_h}\right) , \qquad \Lambda_1 \simeq 0.5 \text{ GeV} \end{split}$$

the denominator in the VMD Ansatz becomes

$$\begin{split} r_{V/TV} &= \frac{m_{H_s}}{m_{H_s}} \simeq 1 + \frac{\lambda_2}{m_{H_s}^2} \implies \sqrt{r_{V/TV}^2 + \frac{x_\gamma^2}{4} + \frac{x_\gamma}{2} - 1} \simeq \frac{\lambda_2}{m_{H_s}^2} + \frac{x_\gamma}{2} + \dots \\ r_{A/TA} &= \frac{m_{H_{s1}}}{m_{H_s}} \simeq 1 + \frac{\Lambda_1}{m_{H_s}} \implies \sqrt{r_{A/TA}^2 + \frac{x_\gamma^2}{4} + \frac{x_\gamma}{2} - 1} \simeq \frac{\Lambda_1}{m_{H_s}} + \frac{x_\gamma}{2} + \dots \end{split}$$

If  $x_{\gamma} \ll 2\lambda_2/m_{H_s}^2$   $(x_{\gamma} \ll 2\Lambda_1/m_{H_s})$ , the presence of a quasi-pole generates an enhancement of  $F_{V/TV}$   $(F_{A/TA})$  of order  $\mathcal{O}(m_{H_s}^2)$   $(\mathcal{O}(m_{H_s}))$ .

To extrapolate to the physical  $B_s$  we cook up a phenomenological fit Ansatz which combines the scaling laws valid for very hard photons, with the quasi-pole correction due to resonance contributions.

#### The global fit Ansatz

We extrapolate to the physical  $B_s$  through a combined fit of the form factors  $[z = 1/m_{H_s}, \text{ fit parameters are in red}]$ :

$$\begin{split} \frac{F_V(x_{\gamma}, z)}{f_{H_s}} &= \frac{|q_s|}{x_{\gamma}} \frac{1}{1 + C_V \frac{2z^2}{x_{\gamma}}} \left( K + (1 + \delta_z) \frac{z}{x_{\gamma}} + \frac{1}{z^{-1} - \Lambda_H} + A_m z + A_{x_{\gamma}} \frac{z}{x_{\gamma}} \right) \\ \frac{F_A(x_{\gamma}, z)}{f_{H_s}} &= \frac{|q_s|}{x_{\gamma}} \frac{1}{1 + C_A \frac{2z}{x_{\gamma}}} \left( K - (1 + \delta_z) \frac{z}{x_{\gamma}} - \frac{1}{z^{-1} - \Lambda_H} + A_m z + (A_{x_{\gamma}} + 2KC_A) \frac{z}{x_{\gamma}} \right) \\ \frac{F_{TV}(x_{\gamma}, z)}{f_{H_s}} &= \frac{|q_s|}{x_{\gamma}} \frac{1 + 2C_V z^2}{1 + C_V \frac{2z^2}{x_{\gamma}}} \left( K_T + (A_m^T + 1)z + A_{x_{\gamma}}^T \frac{z}{x_{\gamma}} + (1 + \delta'_z)z \frac{1 - x_{\gamma}}{x_{\gamma}} \right) \\ \frac{F_{TA}(x_{\gamma}, z)}{f_{H_s}} &= \frac{|q_s|}{x_{\gamma}} \frac{1 + 2C_A^T z}{1 + C_A^T \frac{z}{x_{\gamma}}} \left( K_T + (A_m^T + 1)z + A_{x_{\gamma}}^T \frac{z}{x_{\gamma}} - (1 + \delta'_z - 2K_T C_A^T)z \frac{1 - x_{\gamma}}{x_{\gamma}} \right) \end{split}$$

- Fit structure takes into account constraints from the scaling laws valid at large  $E_{\gamma}$  and  $m_{H_s}$ , and contains the resonance corrections (relevant at small  $x_{\gamma}$ ).
- We included in the fit also NNLO  $1/E_{\gamma}^2$  ,  $1/m_{H_s}^2$  corrections.
- Some of the constraints appearing in the large energy/mass EFT have been relaxed as they are valid neglecting  $\mathcal{O}(m_s)$  and radiative corrections to the power-suppressed terms.

#### The form factors at the physical point $m_{B_s} \simeq 5.367$ GeV



Observed steeper m<sub>H<sub>s</sub></sub>-dependence of the form factors at small x<sub>γ</sub> ✓.
 [Determination of f<sub>H<sub>s</sub></sub> and f<sub>B<sub>s</sub></sub> in backup].

- We performed more than 500 fits, by including or not some of the fit parameters from previous global fit Ansatz, and imposing or not  $K = K_T$  and  $C_A = C_A^T$ .
- Different fits combined using AIC or by including in the final average (and with a uniform weight) only those fits having \(\chi\_2^2/dof < 1.4\) (the two strategies give consistent results, second criterion used to give final numbers).

#### Pole parameters:

 $C_V = (0.57(3) \text{ GeV})^2$ ,  $C_A = 0.70(7) \text{ GeV}$ ,  $C_A^T = 0.77(4) \text{ GeV}$ 

#### Expectations from pure VMD:

 $C_V^{\text{VMD}} = \lambda_2 \simeq (0.5 \text{ GeV})^2, \qquad C_A^{\text{VMD}} = C_A^{T,\text{VMD}} = \Lambda_1 \simeq 0.5 \text{ GeV}$ 

- In vector channels, where VMD is expected to be a reasonable approximation, substantial agreement between  $C_V$  and  $C_V^{\text{VMD}}$ .
- In the axial channels, VMD does not work very well: many resonances of masses  $m_{\rm res} \sim m_{H_s} + \mathcal{O}(\Lambda_{\rm QCD}) \dots$
- ... which is the reason why for  $F_A$  and  $F_{TA}$  two different parameters  $C_A$ ,  $C_A^T$  have been introduced.  $C_A$  and  $C_A^T$  of order  $\mathcal{O}(\Lambda_{QCD})$ , as expected.
- For K and  $K_T$  we obtain:

$$K = 1.46(10) \text{ GeV}^{-1}, \qquad K_T = 1.39(6) \text{ GeV}^{-1}$$

#### Comparison with previous calculations



Ref. [3] = Janowski, Pullin , Zwicky , JHEP '21 , light-cone sum rules.

- Ref. [4] = Kozachuk, Melikhov, Nikitin , PRD '18 , relativistic dispersion relations.
- Ref. [5] = Guadagnoli, Normand, Simula, Vittorio, JHEP '23, VMD/Lattice.

With a few exceptions, our results for the form factors differ significantly from the earlier estimates (which also differ from each other).

### A quick look at the (small) form factor $\overline{F}_T$

The lattice determination of the form factor  $\bar{F}_T$  is hindered by the presence of problems of analytic continuation when  $\gamma^*$  is emitted by a strange quark.



For  $q^2 \gtrsim m_{\phi}^2$  the relevant Minkowskian correlation functions needed to evaluate  $\bar{F}_T$  cannot be analytically continued to Euclidean spacetime.  $\bar{F}_T$  also develops an immaginary part.

Recently, we have developed a new method, based on spectral reconstruction techniques, which allows to circumvent this problem [Frezzotti et al., PRD '23]. [Backup]



 $\stackrel{\qquad \leftarrow}{\longleftarrow} \ b\text{-quark contribution not} \\ affected by this issue. Mass \\ extrapolation carried out using \\ VMD-inspired Ansatz assuming \\ \Upsilon\text{-resonances dominance.}$ 

 The differential branching fraction for  $\bar B_s \to \mu^+ \mu^- \gamma$  can be decomposed as a sum of three terms

$$\frac{\mathrm{d}\mathcal{B}}{\mathrm{d}x_{\gamma}} = \frac{\mathrm{d}\mathcal{B}_{\mathrm{PT}}}{\mathrm{d}x_{\gamma}} + \frac{\mathrm{d}\mathcal{B}_{\mathrm{INT}}}{\mathrm{d}x_{\gamma}} + \frac{\mathrm{d}\mathcal{B}_{\mathrm{SD}}}{\mathrm{d}x_{\gamma}} \qquad \qquad \left[q^2 = m_{B_s}^2(1-x_{\gamma})\right]$$

- $d\mathcal{B}_{\rm PT}/dx_{\gamma}$  is the point-like contribution ( $\propto f_{B_s}^2$ ).
- It suffers from an IR-divergence  $(d\mathcal{B}/dx_{\gamma} \propto 1/x_{\gamma} \text{ at small } x_{\gamma})$ , which is then cancelled by the virtual-photon correction to  $\bar{B}_s \rightarrow \mu^+ \mu^-$  through the Block-Nordsieck mechanism.
- $d{\cal B}_{\rm INT}/dx_{\gamma}$  is the interference contribution and depends linearly on the form factors.
- $d{\cal B}_{\rm SD}/dx_\gamma$  is the structure-dependent contribution and is quadratic in the form factors.

Both the interference and structure-dependent contributions are infrared finite.

#### Adding contributions from penguin operators

We did not compute from first-principles the contributions from four-quark and chromomagnetic operators  $\mathcal{O}_{i=1-6,8}$ .

• It is expected that among these contributions the dominant one in  $\bar{B}_s \rightarrow \mu^+ \mu^- \gamma$  at  $q^2 > (4.2 \text{ GeV})^2$  is the charming-penguin diagram stemming from  $\mathcal{O}_{1-2}$  due to  $J^P = 1^-$  charmonium resonances.



In analogy with previous works [Guadagnoli et al, JHEP '17, '23] we model  $\Delta C_9(q^2)$  as

$$\Delta C_9(q^2) = \frac{9\pi}{\alpha_{\rm em}^2} \bar{C} \sum_V |k_V| e^{i\delta_V} \frac{m_V B(V \to \mu^+ \mu^-) \Gamma_V}{q^2 - m_V^2 + im_V \Gamma_V}$$
$$\bar{C} = C_1 + C_2/3 \simeq -0.2$$

This contribution can be included as a shift of the Wilson coefficient 
$$C_9$$
:

$$C_9 \to C_9^{\text{eff}}(q^2) = C_9 - \Delta C_9(q^2)$$

 $\delta_V = |k_V| - 1 = 0$  holds in the factorization approximation.

| $V_{c\bar{c}}$ | $M_{V_{c\bar{c}}}$ [GeV] | $\Gamma [MeV]$ | $B(V_{c\bar{c}} \rightarrow \mu^+ \mu^-)$ |
|----------------|--------------------------|----------------|-------------------------------------------|
| $J/\psi$       | 3.096900(6)              | 0.0926(17)     | 0.05961(33)                               |
| $\Psi(2S)$     | 3.68610(6)               | 0.294(8)       | $8.0(6) \cdot 10^{-3}$                    |
| $\Psi(3770)$   | 3.7737(4)                | 27.2(1.0)      | $*9.6(7) \cdot 10^{-6}$                   |
| $\Psi(4040)$   | 4.039(1)                 | 80(10)         | $*1.07(16) \cdot 10^{-5}$                 |
| $\Psi(4160)$   | 4.191(5)                 | 70(10)         | $*6.9(3.3) \cdot 10^{-6}$                 |
| $\Psi(4230)$   | 4.2225(24)               | 48(8)          | $3.2(2.9) \cdot 10^{-5}$                  |
| $\Psi(4415)$   | 4.421(4)                 | 62(20)         | $2(1) \cdot 10^{-5}$                      |
| $\Psi(4660)$   | 4.630(6)                 | $72^{+14}$     | not seen                                  |

We assume uniformly distributed phases  $\delta_V \in [0, 2\pi]$  and  $|k_V| = 1.75(75)$ .

#### The differential branching fractions



• For  $x_{\gamma} \gtrsim 0.15$ , the SD is dominant over the PT contribution.

- For  $x_\gamma\gtrsim 0.2$ , charming-penguin uncertainties become dominant, due to the presence of charmonium states which overlap with the  $x_\gamma$ -region considered.
- INT contribution is always about two orders of magnitude smaller than SD.

#### The branching fractions

$$\mathcal{B}(x_{\gamma}^{\text{cut}}) = \int_{0}^{x_{\gamma}^{\text{cut}}} \mathrm{d}x_{\gamma} \ \frac{\mathrm{d}\mathcal{B}}{\mathrm{d}x_{\gamma}} \qquad \qquad x_{\gamma}^{\text{cut}} \equiv 1 - \frac{q_{\text{cut}}^2}{m_{B_s}^2}$$

-  $E_{\gamma}^{\rm cut}=x_{\gamma}^{\rm cut}m_{B_s}/2$  is the upper-bound on the measured photon energy.



- SD contribution dominated by vector form factor F<sub>V</sub>. Tensor form-factor contributions suppressed by small Wilson coefficient C<sub>7</sub> ≪ C<sub>9</sub>, C<sub>10</sub>.
- At x<sup>cut</sup><sub>γ</sub> ~ 0.4 our estimate of charming-penguins uncertainties is around 30%.

Comparison with current LHCb upper-bound for  $x_{\gamma}^{\text{cut}} \sim 0.166$ .

 $\mathcal{B}_{SD}^{LHCb}(0.166) < 2 \times 10^{-9}$ ,  $\mathcal{B}_{SD}(0.166) = 6.9(9) \times 10^{-11}$  [This work]

#### Comparison with previous works



- Ref. [3] = Janowski, Pullin , Zwicky , JHEP '21 , light-cone sum rules.
- Ref. [4] = Kozachuk, Melikhov, Nikitin , PRD '18 , relativistic dispersion relations.
- Ref. [5] = Guadagnoli, Normand, Simula, Vittorio, JHEP '23, VMD/Lattice.

Differences with earlier estimates can be traced back to the fact that our determination of  $F_V$  (which gives the dominant contribution to the branching) is larger (smaller) than the one of Refs. [4-5] (Ref. [3]) by a factor of about 1.5-2.

#### Conclusions

- We have presented a first-principles lattice calculation of the form factors  $F_V, F_A, F_{TV}, F_{TA}$  entering the  $\bar{B}_s \rightarrow \mu^+ \mu^- \gamma$  decay, in the electroquenched approximation.
- Systematic errors have been controlled thanks to the use of gauge configurations produced by the ETM Collaboration, which correspond to four values of the lattice spacing  $a \in [0.057 : 0.09]$  fm, and through the use of five different heavy-strange masses  $m_{H_s} \in [m_{D_s} : 2m_{D_s}]$ .
- Presently our result for the branching fractions have uncertainties ranging from  $\sim 15\%$  at  $\sqrt{q_{
  m cut}^2} = 4.9$  GeV to  $\sim 30\%$  at  $\sqrt{q_{
  m cut}^2} = 4.2$  GeV.
- At small  $q_{\rm cut}^2$  uncertainty dominated by the charming-penguins which we included using a phenomenological parameterization.

# Outlook:

- Evaluate electro-unquenching effects.
- Evaluate charming-penguins contributions from first-principles.
- Simulate on finer lattice spacings to be able to reach higher  $m_{H_{\rm S}}$  and reduce the impact of the mass-extrapolation.

# Thank you for the attention!

# Backup

## Determination of $f_{H_s}$

We determined the decay constant corresponding to the five simulated values of the heavy-strange mass  $m_{H_s}$  on the same ensembles used to determine the form factors.

- $f_{H_s}$  determined using two different estimators, which only differ by  $\mathcal{O}(a^2)$  cut-off effects.
- 1st estimator:  $f_{H_s}$  determined from mesonic pseudoscalar two-point correlation function (std method). We refer to this determination as  $f_{H_s}^{2\text{pt}}$ .
- 2nd estimator: from the zero-momentum correlation function:

$$\int \mathrm{d}^4 y \; \hat{T} \langle 0 | J^i_{\mathrm{em}}(y) J^i_A(0) | \bar{H}_s(\mathbf{0}) \rangle \propto f_{H_s}$$

•  $J_A^{\nu} = \bar{s} \gamma^{\nu} \gamma_5 h$  is the axial current. We refer to this determination as  $f_{H_s}^{3\text{pt}}$ .

Combined continuum-extrapolation of  $f_{H_s}^{\rm 2pt}$  and  $f_{H_s}^{\rm 3pt}$  using the Ansatz:

$$\begin{split} \phi^{\text{2pt}}_{H_s} &\equiv f^{\text{2pt}}_{H_s} \sqrt{m_{H_s}} = A + B^{\text{2pt}} a^2 + D^{\text{2pt}} a^4 \\ \phi^{\text{3pt}}_{H_s} &\equiv f^{\text{3pt}}_{H_s} \sqrt{m_{H_s}} = A + B^{\text{3pt}} a^2 + D^{\text{3pt}} a^4 \end{split}$$

## Continuum-limit extrapolation of $\phi_{H_s} = f_{H_s} \sqrt{m_{H_s}}$



24

#### Extrapolation to the physical $B_s$ mass

To extrapolate to the physical  ${\it B}_{\it s}$  mass, we employed the following HQET Ansatz

$$\phi(m_{H_s}) = \underbrace{C_{\gamma^0 \gamma^5}(m_h, m_h)}_{\text{HQET/QCD matching}} \exp\left\{\underbrace{\int_0^{\alpha_s(m_h)} \frac{\gamma_{\tilde{J}}(\alpha_s)}{2\beta(\alpha_s)} \frac{d\alpha_s}{\alpha_s}}_{\text{HQET-evolutor}}\right\} \left(A + \frac{B}{m_{H_s}}\right)$$

- A and B are free fit parameters.
- $m_h$  should be identified with the pole mass  $m_h^{\rm pole}$  (notoriously affected by renormalon ambiguities). We used in place of the pole mass the meson mass:  $m_{H_s} m_h^{\rm pole} \simeq \mathcal{O}(\Lambda_{\rm QCD}).$



We obtain:  $f_{B_s} = 224.5 (5.0) \text{ MeV}$ 

FLAG average: 230.3 (1.3) MeV 25

### Determination of the form factor $\bar{F}_T$

The form factor  $\bar{F}_T$ , is the smallest of all the form factors (and barely relevant within present accuracy). It can be computed from the knowledge of the following hadronic

#### tensor

$$H_{\bar{T}}^{\mu\nu}(p,k) = i \int d^4x \ e^{i(p-k)x} \ \hat{T}\langle 0|J_{\bar{T}}^{\nu}(0)J_{\rm em}^{\mu}(x)|\bar{B}_s(\mathbf{0})\rangle = -\varepsilon^{\mu\nu\rho\sigma}k_{\rho}p_{\sigma}\frac{F_T}{m_{B_s}}$$

where  $(Z_T \text{ is the renormalization constant of tensor current})$ 

$$J^{\nu}_{\bar{T}} = -iZ_T(\mu)\bar{s}\,\sigma^{\nu\rho}\,b\frac{k\rho}{m_{B_s}}$$



• When the virtual photon  $\gamma^*$  is emitted by a strange quark, the presence of  $J^P = 1^- s\bar{s}$  intermediate states forbid the analytic continuation of the relevant correlation functions from Minkowskian to Euclidean spacetime (where we perform MC simulations).

Let us start discussing the simpler contribution  $\bar{F}^b_T,$  due to the emission of  $\gamma^*$  from a b-quark.

- In this case the calculation proceeds as in the case of the other form factors  $F_W$ ,  $W = \{V, A, TV, TA\}$ , i.e. the hadronic tensor  $H^{\mu\nu}_{\bar{T}_b}$  can be directly evaluated from Euclidean spacetime simulations.
- We performed simulations for three value of the heavy-strange meson mass  $m_{H_s} \in [m_{D_s}: 1.8 m_{D_s}]$  (or in terms of the heavy quark mass  $m_h$  for  $m_h/m_c = 1, 1.5, 2.5$ ), and two values of the lattice spacings (the two gauge ensembles are called B64 and D96). Very small cut-off effects observed.



# Mass extrapolation of $\bar{F}_T^b$ (I)

The extrapolation of  $\bar{F}^b_T(x_\gamma)$  to the physical mass  $m_{B_s}=5.367~{\rm GeV}$  is carried out using a VMD inspired Ansatz.

- $\bar{F}^b_T$  is expected to be dominated by  $J^P = 1^- b\bar{b}$  resonance contributions (e.g.  $\Upsilon(1S), \Upsilon(2S), \Upsilon(3S), \ldots$ ), which can be approximated as stable states.
- Using an unphysical heavy quark mass  $m_h < m_b$  these states will be fictitious  $h\bar{h},~J^P=1^-,$  intermediate states.
- The contribution to  $\bar{F}^b_T$  of a given resonance "n" of mass  $m_n$  and electromagnetic decay constant  $f_n$  is given by

$$\bar{F}_{T,n}^b(x_{\gamma}) = \frac{q_b f_n m_n g_n^+(0)}{E_n(E_n + E_{\gamma} - m_{H_s})} + \text{regular terms}$$

where  $E_n = \sqrt{m_n^2 + E_\gamma^2}$  and ( $\eta$  is the polarization of the vector resonance)  $\langle n(-\mathbf{k},\eta) | \, \bar{s}\sigma^{\mu\nu}h \, | \bar{H}_s(\mathbf{0}) \rangle = i\eta_\beta^* \epsilon^{\mu\nu\beta\gamma} g_n^+(p_\gamma^2)(p+q_n)_\gamma + \dots$ 

with  $q_n = (E_n, -k)$ ,  $p_{\gamma} = p - q_n$ .

# Mass extrapolation of $\bar{F}_T^b$ (II)

In the heavy-quark limit the following scaling laws hold

$$f_n \propto \frac{1}{\sqrt{m_h}} + \ldots \propto \frac{1}{\sqrt{m_{H_s}}} + \ldots , \qquad \frac{m_n}{m_{H_s}} = 2 + \frac{\Lambda_T^n}{m_{H_s}} + \ldots$$

- $\Lambda^n_T \simeq \mathcal{O}(\Lambda_{\rm QCD})$  and ellipses indicate NLO terms in the heavy-quark expansion.
- Using these relations  $\bar{F}^b_{T,n}$  can be approximated by

$$\bar{F}_{T,n}^{b}(x_{\gamma}) = \frac{q_{b}}{m_{H_{s}}} \frac{f_{n} g_{n}^{+}(0)}{1 + \frac{x_{\gamma}}{2} + \frac{\Lambda_{T}^{n}}{m_{H_{s}}}} \left(1 + \mathcal{O}\left(x_{\gamma}, \frac{\Lambda_{\text{QCD}}}{m_{H_{s}}}\right)\right)$$

Our strategy is to replace the tower of resonance contributions, with a single effective-pole

$$\bar{F}_{T}^{b}(x_{\gamma}, m_{H_{s}}) = \frac{1}{m_{H_{s}}} \frac{A + B x_{\gamma}}{1 + \frac{x_{\gamma}}{2} + \frac{\Lambda_{T}}{m_{H_{s}}}}$$

• A , B and  $\Lambda_T$  are free-fit parameters. Our Ansatz assumes  $g_n^+ \propto \sqrt{m_{H_s}}$ , which is consistent with our data.

# Final results for $\bar{F}_T^b$

We have performed a global fit of the  $x_{7^-}$  and  $m_{H_s}$  -dependence of our lattice data, using the Ansatz in the previous slide.



- Our VMD-inspired Ansatz (which contains only 3 free-parameters) perfectly captures the  $x_{\gamma}$  and  $m_{H_s}$  dependence of the data.
- The magenta band corresponds to the extrapolated results at  $m_{B_s}=5.367~{
  m GeV}.$  Effective-pole located at  $2m_{H_s}+\Lambda_T\simeq 10.4(1)~{
  m GeV}.$
- As anticipated, this contribution turns out to be one order of magnitude suppressed w.r.t.  $F_{TV}$  and  $F_{TA}$ .

## The strange-quark contribution $\bar{F}_T^s$

The hadronic tensor  $H_{\bar{T}_s}^{\mu\nu}$  cannot be analytically continued to Euclidean spacetime  $[J_{
m em}^s=q_s\bar{s}\gamma^\mu s,\,\hat{H}$  is the Hamiltonian]

$$H_{\bar{T}_{s}}^{\mu\nu}(p,k) = i \int_{-\infty}^{\infty} dt \, e^{i(m_{B_{s}} - E_{\gamma})t} \, \langle 0| J_{\bar{T}}^{\nu}(0) \, J_{\mathrm{em}}^{s}(0,-k) |\bar{B}_{s}(0) \rangle$$

$$= \langle 0|J_{\bar{T}}^{\nu}(0)\frac{1}{\hat{H} - E_{\gamma} - i\varepsilon}J_{\mathrm{em}}^{s,\mu}(0,-k)|\bar{B}_{s}(0)\rangle$$

$$+ \langle 0|J_{\rm em}^{s,\mu}(0,-k) \frac{1}{\hat{H} + E_{\gamma} - m_{B_s} - i\varepsilon} J_{\bar{T}}^{\nu}(0)|\bar{B}_s(0)\rangle = H_{\bar{T}_s,1}^{\mu\nu}(p,k) + H_{\bar{T}_s,2}^{\mu\nu}(p,k)$$

- Analytic continuation  $t \rightarrow -it$  possible only if the following positivity-conditions are met

$$\langle n|\hat{H} - E_{\gamma}|n\rangle > 0, \qquad \qquad \langle n|\hat{H} + E_{\gamma} - m_{B_s}|n\rangle > 0$$

- $|n\rangle$  is any of the intermediate-states that can propagate between the electromagnetic and tensor currents.
- The second condition is equivalent to  $q^2 < m_n^2 \ (m_n$  is the rest-energy of the intermediate state  $|n\rangle)...$
- ...which is violated because the smallest m<sub>n</sub> here is 2m<sub>K</sub>. In the case of the b-quark this is instead m<sub>Y</sub>. The first condition is instead always satisfied.

#### The spectral-density representation

The main idea for circumventing the problem of analytic continuation is to consider the spectral-density representation of the hadronic tensor  $[E = m_{B_s} - E_{\gamma}]$ 

$$H_{\bar{T}_{s},2}^{\mu\nu}(E,\boldsymbol{k}) = \lim_{\varepsilon \to 0^{+}} \int_{E^{*}}^{\infty} \frac{dE'}{2\pi} \frac{\rho^{\mu\nu}(E',\boldsymbol{k})}{E' - E - i\varepsilon} = \operatorname{PV} \int_{E^{*}}^{\infty} \frac{dE'}{2\pi} \frac{\rho^{\mu\nu}(E',\boldsymbol{k})}{E' - E} + \frac{i}{2} \rho^{\mu\nu}(E,\boldsymbol{k})$$

• The spectral-density  $\rho^{\mu\nu}$  is related to the Euclidean correlation function  $C^{\mu\nu}(t,k)$ , which we can directly compute on the lattice, via

$$\underbrace{C^{\mu\nu}(t,k)}_{\text{lattice input}} = \int_{E^*}^{\infty} \frac{dE'}{2\pi} e^{-E't} \rho^{\mu\nu}(E',k)$$

- Unfortunately, determining ρ<sup>μν</sup> from C<sup>μν</sup>(t, k), which is computed on the lattice at a discrete set of times and with a finite accuracy, is not possible (inverse Laplace transform problem).
- The regularized quantity that we can evaluate, exploiting the Hansen-Lupo-Tantalo method [PRD 99 '19], is a smeared version of the hadronic tensor, obtained by considering non-zero values of the Feynman's  $\varepsilon$

$$H^{\mu\nu}_{\bar{T}_{s},2}(E,\boldsymbol{k};\varepsilon) = \int_{E^*}^{\infty} \frac{dE'}{2\pi} \frac{\rho^{\mu\nu}(E',\boldsymbol{k})}{E'-E-i\varepsilon}$$

The evaluation of the hadronic tensor at finite  $\varepsilon$  leads to a smeared form factor  $\bar{F}_T^s(x_{\gamma};\varepsilon)$ . In the limit of vanishing  $\varepsilon$  one has

$$\lim_{\varepsilon \to 0^+} \bar{F}_T^s(x_\gamma;\varepsilon) = \bar{F}_T^s(x_\gamma)$$

- As we have shown in [Frezzotti et al. PRD 108 '23], the corrections to the vanishing  $\varepsilon$  limit are of the form

$$\bar{F}_T^s(x_\gamma;\varepsilon) = \bar{F}_T^s(x_\gamma) + A_1 \varepsilon + A_2 \varepsilon^2 + \mathcal{O}(\varepsilon^3)$$

- The onset of the polynomial regime depends on the typical size  $\Delta(E)$  of the interval around E on which the hadronic tensor is significantly varying, and one needs  $\varepsilon \ll \Delta(E)$ .
- We evaluated  $\bar{F}_T(x_\gamma;\varepsilon)$  for several values of  $\varepsilon/m_{H_s} \in [0.4:1.3]$ , and then performed a polynomial extrapolation in  $\varepsilon$ .

#### The vanishing- $\varepsilon$ extrapolation



Both the real and imaginary part of the smearead form factor  $\bar{F}_T^s(x_\gamma;\varepsilon)$  show an almost linear behaviour at small  $\varepsilon$ . Besides the polynomial extrapolations, we have performed additional model-dependent, non-polynomial, extrapolations, to have a conservative estimate of the possible systematics associated to the vanishing- $\varepsilon$  limit.

### $\bar{F}_T^s$ at the physical mass $m_{B_s} \simeq 5.367 \text{ GeV}$



- Very small x<sub>γ</sub> dependence observed.
- To have a conservative error estimate, we take the results at the largest simulated mass  $m_{H_s} \simeq 1.78 \, m_{D_s}$  as a bound for the value of the form factor at the physical point,  $m_{H_s} = m_{B_s}$ .