$B_{s} \rightarrow \mu^{+} \mu^{-} \gamma$ at large q^{2} from lattice QCD

Giuseppe Gagliardi, INFN Sezione di Roma Tre

In collaboration with:
R. Frezzotti, V. Lubicz, G. Martinelli, C.T. Sachrajda,
F. Sanfilippo, S. Simula, N. Tantalo
[pre-print: arXiv:2402.03262]
Workshop on radiative leptonic B decays, 29 February 2024, Marseille.

Motivations

Why $B_{s} \rightarrow \mu^{+} \mu^{-} \gamma$ at large q^{2} ?

- The $B_{s} \rightarrow \mu^{+} \mu^{-} \gamma$ decay allows for a new test of the SM predictions in $b \rightarrow s$ FCNC transitions.
- Despite the $\mathcal{O}\left(\alpha_{\mathrm{em}}\right)$-suppression w.r.t. the widely studied $B_{s} \rightarrow \mu^{+} \mu^{-}$, removal of helicity-suppression makes the two decay rates comparable in magnitude.
- At very high $\sqrt{q^{2}}=$ invariant mass of the $\mu^{+} \mu^{-}$, the contributions from penguin operators appearing in the weak effective-theory, which are difficult to compute on the lattice, are suppressed [Guadagnoli, Reboud, Zwicky, JHEP '17] ک.

In this talk I will present the first, (\simeq) first-principles lattice QCD calculation of the $B_{s} \rightarrow \mu^{+} \mu^{-} \gamma$ decay rate for $q^{2} \gtrsim(4.2 \mathrm{GeV})^{2}$.

The effective weak-Hamiltonian

The low-energy effective theory describing the $b \rightarrow s$ transition, neglecting doubly Cabibbo-suppressed terms, is

$$
\mathcal{H}_{\mathrm{eff}}^{b \rightarrow s}=2 \sqrt{2} G_{F} V_{t b} V_{t s}^{*}\left[\sum_{i=1,2} C_{i}(\mu) \mathcal{O}_{i}^{c}+\sum_{i=3}^{6} C_{i}(\mu) \mathcal{O}_{i}+\frac{\alpha_{\mathrm{em}}}{4 \pi} \sum_{i=7}^{10} C_{i}(\mu) \mathcal{O}_{i}\right]
$$

$$
\text { current-current: } \quad \mathcal{O}_{1}^{c}=\left(\bar{s}_{i} \gamma^{\mu} P_{L} c_{j}\right)\left(\bar{c}_{j} \gamma^{\mu} P_{L} b_{i}\right), \quad \mathcal{O}_{2}^{c}=\left(\bar{s} \gamma^{\mu} P_{L} c\right)\left(\bar{c} \gamma^{\mu} P_{L} b\right)
$$

$$
\text { ph./chromo. penguins: } \quad \mathcal{O}_{7}=-\frac{m_{b}}{e} \bar{s} \sigma^{\mu \nu} F_{\mu \nu} P_{R} b, \quad \mathcal{O}_{8}=-\frac{g_{s} m_{b}}{4 \pi \alpha_{\mathrm{em}}} \bar{s} \sigma^{\mu \nu} G_{\mu \nu} P_{R} b
$$

$$
\text { semileptonic: } \quad \mathcal{O}_{9}=\left(\bar{s} \gamma^{\mu} P_{L} b\right)\left(\bar{\mu} \gamma_{\mu} \mu\right), \quad \mathcal{O}_{10}=\left(\bar{s} \gamma^{\mu} P_{L} b\right)\left(\bar{\mu} \gamma_{\mu} \gamma^{5} \mu\right)
$$

- The amplitude \mathcal{A} is the sandwich of $\mathcal{H}_{\mathrm{eff}}^{b \rightarrow s}$ between initial and final states

$$
\mathcal{A}\left[\bar{B}_{s} \rightarrow \mu^{+} \mu^{-} \gamma\right]=\left\langle\gamma(\boldsymbol{k}, \varepsilon) \mu^{+}\left(p_{1}\right) \mu^{-}\left(p_{2}\right)\right|-\mathcal{H}_{\mathrm{eff}}^{b \rightarrow s}\left|\bar{B}_{s}(\boldsymbol{p})\right\rangle_{\mathrm{QCD}+\mathrm{QED}}
$$

- To lowest-order in $\mathcal{O}\left(\alpha_{\mathrm{em}}\right)$ [Beneke et al, EPJC 2011]:

$$
\mathcal{A}\left[\bar{B}_{s} \rightarrow \mu^{+} \mu^{-} \gamma\right]=-e \frac{\alpha_{\mathrm{em}}}{\sqrt{2} \pi} V_{t b} V_{t s}^{*} \varepsilon_{\mu}^{*}[\sum_{i=1}^{9} C_{i} \overbrace{H_{i}^{\mu \nu}}^{\mathrm{NP}-\mathrm{QCD}} L_{V \nu}+C_{10}(\overbrace{H_{10}^{\mu \nu}}^{\mathrm{NP}-\mathrm{QCD}} L_{A \nu}-\overbrace{\frac{i}{2} f_{B_{s}} L_{A}^{\mu \nu} p_{\nu}}^{\mathrm{PT}-\text { contribution }})]_{2}
$$

The local form factors and penguin operators

The non-perturbative information is encoded in the hadronic tensors $H_{i}^{\mu \nu}$, which can be grouped in three categories:

Contributions from semileptonic operators:

$$
\begin{aligned}
H_{9}^{\mu \nu}(p, k)=H_{10}^{\mu \nu}(p, k) & =i \int d^{4} y e^{i k y} \hat{\mathrm{~T}}\langle 0|\left[\bar{s} \gamma^{\nu} P_{L} b\right](0) J_{\mathrm{em}}^{\mu}(y)\left|\bar{B}_{s}(\boldsymbol{p})\right\rangle \\
& =-i\left[g^{\mu \nu}(k \cdot q)-q^{\mu} k^{\nu}\right] \frac{F_{A}}{2 m_{B_{s}}}+\varepsilon^{\mu \nu \rho \sigma} k_{\rho} q_{\sigma} \frac{F_{V}}{2 m_{B_{s}}}
\end{aligned}
$$

- Parametrized by vector and axial form factors $F_{V}\left(x_{\gamma}\right)$ and $F_{A}\left(x_{\gamma}\right)$ $\left[x_{\gamma} \equiv 2 E_{\gamma} / m_{B_{s}}\right] . E_{\gamma}$ is the photon energy in the rest-frame of the \bar{B}_{s}.

The local form factors and penguin operators

The non-perturbative information is encoded in the hadronic tensors $H_{i}^{\mu \nu}$, which can be grouped in three categories:

Contributions from photon-penguin operator (A-type):

$$
\begin{aligned}
H_{7 A}^{\mu \nu}(p, k) & =i \frac{2 m_{b}}{q^{2}} \int d^{4} y e^{i k y} \hat{\mathrm{~T}}\langle 0|\left[-i \bar{s} \sigma^{\nu \rho} q_{\rho} P_{R} b\right](0) J_{\mathrm{em}}^{\mu}(y)\left|\bar{B}_{s}(\boldsymbol{p})\right\rangle \\
& =-i\left[g^{\mu \nu}(k \cdot q)-q^{\mu} k^{\nu}\right] \frac{F_{T A} m_{b}}{q^{2}}+\varepsilon^{\mu \nu \rho \sigma} k_{\rho} q_{\sigma} \frac{F_{T V} m_{b}}{q^{2}}
\end{aligned}
$$

- Parametrized by tensor and axial-tensor form factors $F_{T V}\left(x_{\gamma}\right)$ and $F_{T A}\left(x_{\gamma}\right)$. Algebraic constraint: $F_{T V}(1)=F_{T A}(1)$.

The local form factors and penguin operators

The non-perturbative information is encoded in the hadronic tensors $H_{i}^{\mu \nu}$, which can be grouped in three categories:

Contributions from photon-penguin operator (B-type):

$$
\begin{aligned}
H_{7 B}^{\mu \nu}(p, k) & =i \frac{2 m_{b}}{q^{2}} \int d^{4} y e^{i q y} \hat{\mathrm{~T}}\langle 0|\left[-i \bar{s} \sigma^{\mu \rho} k_{\rho} P_{R} b\right](0) J_{\mathrm{em}}^{\nu}(y)\left|\bar{B}_{s}(\boldsymbol{p})\right\rangle \\
& =-i\left[g^{\mu \nu}(k \cdot q)-q^{\mu} k^{\nu}\right] \frac{\bar{F}_{T A} m_{b}}{q^{2}}+\varepsilon^{\mu \nu \rho \sigma} k_{\rho} q_{\sigma} \frac{\bar{F}_{T V} m_{b}}{q^{2}}
\end{aligned}
$$

- Parametrized by a single form factor $\bar{F}_{T}\left(x_{\gamma}\right)=\bar{F}_{T V}\left(x_{\gamma}\right)=\bar{F}_{T A}\left(x_{\gamma}\right)$.

The local form factors and penguin operators

The non-perturbative information is encoded in the hadronic tensors $H_{i}^{\mu \nu}$, which can be grouped in three categories:

Contributions from four-quark and chromomagnetic operators:

$$
H_{i=1-6,8}^{\mu \nu}(p, k)=\frac{(4 \pi)^{2}}{q^{2}} \int d^{4} y d^{4} x e^{i k y} e^{i q x} \hat{\mathrm{~T}}\langle 0| J_{\mathrm{em}}^{\mu}(y) J_{\mathrm{em}}^{\nu}(x) \mathcal{O}_{i}(0)\left|\bar{B}_{s}(\boldsymbol{p})\right\rangle
$$

- In the high $-q^{2}$ region, they are formally of higher-order in the $1 / m_{b}$ expansion [Guadagnoli, Reboud, Zwicky, JHEP '17].
- We did not compute them, but have future plans to do so.
- In the evaluation of the branching fractions we only included a phenomenological description of the allegedly dominant contribution from the following charming-penguin diagram:

This contribution is dominated by vector $c \bar{c}$ resonances. Some of them overlap with the q^{2} region we consider. A description of our parameterization will come later.

The local form factors on the lattice

We computed on the lattice the local form factors $F_{V}, F_{A}, F_{T V}, F_{T A}$ and \bar{F}_{T} for

$$
x_{\gamma} \in[0.1: 0.4] \Longrightarrow 4.16 \mathrm{GeV}<\sqrt{q^{2}}<5.1 \mathrm{GeV}
$$

Two main sources of systematics on the lattice, which must be controlled:

- Continuum-limit extrapolation $(a \rightarrow 0)$...

- ...which we handle by simulating at four values of the lattice spacing $a \in[0.057: 0.09] \mathrm{fm}$ using configurations produced by the ETM Collaboration.
- Extrapolation to the physical B_{s} meson mass, which we handle by simulating at five different values of the heavy-strange meson mass $m_{H_{s}} \in\left[m_{D_{s}}: 2 m_{D_{s}}\right] \ldots$
- ...and then performing the extrapolation $m_{H_{s}} \rightarrow m_{B_{s}}$ via pole-like+HQET scaling relations. On current lattices in fact we cannot simulate directly the B_{s} meson, which is too heavy.

Sketch of the lattice calculation of the form factors

Our lattice input is (for simplicity I discuss here only the case of F_{V}):

$$
B_{V}^{\mu \nu}\left(t, x_{\gamma}\right)=\int \mathrm{d} t_{y} \mathrm{~d}^{3} y \mathrm{~d}^{3} x e^{E_{\gamma} t_{y}} e^{-i \boldsymbol{k} \boldsymbol{y}} \hat{\mathrm{~T}}\langle 0| \underbrace{J_{V}^{\nu}}_{\bar{s} \gamma^{\nu} b}(t, 0) J_{\mathrm{em}}^{\mu}\left(t_{y}, \boldsymbol{y}\right) \phi_{B_{s}}^{\dagger}(0, \boldsymbol{x})|0\rangle
$$

We neglect the quark disconnected diagram. It vanishes exactly in the $\mathrm{SU}(3)$-symmetric limit and for $m_{c} \rightarrow \infty$.
This is the electroquenched approximation.

- $\phi_{B_{s}}^{\dagger}$ is an interpolating operator having the quantum numbers to create a \bar{B}_{s}.
- After amputating external states one has

$$
R_{V}^{\mu \nu}\left(t, x_{\gamma}\right) \equiv \frac{2 m_{B_{s}}}{e^{-t\left(m_{B_{s}}-E_{\gamma}\right)}\left\langle\bar{B}_{s}(\mathbf{0})\right| \phi_{B_{s}}^{\dagger}(0)|0\rangle} B_{V}^{\mu \nu}\left(t, x_{\gamma}\right)
$$

- We always inject photon momentum k in lattice direction \hat{z}. In this setup:

$$
R_{V}\left(t, x_{\gamma}\right) \equiv \frac{1}{k_{z}} R_{V}^{12}\left(t, x_{\gamma}\right) \xrightarrow[0 \ll t \ll T / 2]{ } F_{V}\left(x_{\gamma}\right)
$$

- Similar estimators for $F_{A}, F_{T V}$ and $F_{T A} . \bar{F}_{T}$ analysis more complex [Backup].

Extraction of the form factors from lattice data

Illustrative example on the finest lattice spacing $a \sim 0.057 \mathrm{fm}$ for $x_{\gamma}=0.2$ and

$$
m_{h} / m_{c}=2
$$

- We analyze separately the two contributions corresponding to the emission of the real photon from the strange or the heavy quark.
- $x_{\gamma}=2 E_{\gamma} / m_{H_{s}}$ kept fixed increasing the heavy-meson mass $\left(E_{\gamma} \propto m_{H_{s}}\right)$.

Continuum limit extrapolation

We perform the continuum-limit extrapolation at fixed $m_{H_{s}}$ and x_{γ}

We performed a total of 160 continuum-limit extrapolations.
\Longleftarrow Example for $x_{\gamma}=0.4$.

Systematic errors evaluated performing fits using only the three finest lattice spacings.
Results obtained using three or four lattice spacings combined using AIC.

Extrapolation to the physical B_{s} meson mass (I)

After continuum extrapolation, the most delicate task is to extrapolate the form factors, computed for $m_{H_{s}} \in\left[m_{D_{s}}: 2 m_{D_{s}}\right]$, to $m_{B_{s}} \sim 5.367 \mathrm{GeV}$.

- Elegant scaling laws were derived in the limit of large photon energies E_{γ} and large $m_{H_{s}}$ [Beneke et al, EPJC 2011, JHEP 2020]. Up to $\mathcal{O}\left(E_{\gamma}^{-1}, m_{H_{s}}^{-1}\right)$ one has

$$
\begin{aligned}
\frac{F_{V}\left(x_{\gamma}, m_{H_{s}}\right)}{f_{H_{s}}} & =\frac{\left|q_{s}\right|}{x_{\gamma}}\left(\frac{R\left(E_{\gamma}, \mu\right)}{\lambda_{B}(\mu)}+\xi\left(x_{\gamma}, m_{H_{s}}\right)+\frac{1}{m_{H_{s}} x_{\gamma}}+\frac{\left|q_{b}\right|}{\left|q_{s}\right|} \frac{1}{m_{h}}\right) \\
\frac{F_{A}\left(x_{\gamma}, m_{H_{s}}\right)}{f_{H_{s}}} & =\frac{\left|q_{s}\right|}{x_{\gamma}}\left(\frac{R\left(E_{\gamma}, \mu\right)}{\lambda_{B}(\mu)}+\xi\left(x_{\gamma}, m_{H_{s}}\right)-\frac{1}{m_{H_{s}} x_{\gamma}}-\frac{\left|q_{b}\right|}{\left|q_{s}\right|} \frac{1}{m_{h}}\right) \\
\frac{F_{T V}\left(x_{\gamma}, m_{H_{s}}, \mu\right)}{f_{H_{s}}} & =\frac{\left|q_{s}\right|}{x_{\gamma}}\left(\frac{R_{T}\left(E_{\gamma}, \mu\right)}{\lambda_{B}(\mu)}+\xi\left(x_{\gamma}, m_{H_{s}}\right)+\frac{1-x_{\gamma}}{m_{H_{s}} x_{\gamma}}+\frac{\left|q_{b}\right|}{\left|q_{s}\right|} \frac{1}{m_{H_{s}}}\right) \\
\frac{F_{T A}\left(x_{\gamma}, m_{H_{s}}, \mu\right)}{f_{H_{s}}} & =\frac{\left|q_{s}\right|}{x_{\gamma}}\left(\frac{R_{T}\left(E_{\gamma}, \mu\right)}{\lambda_{B}(\mu)}+\xi\left(x_{\gamma}, m_{H_{s}}\right)-\frac{1-x_{\gamma}}{m_{H_{s}} x_{\gamma}}+\frac{\left|q_{b}\right|}{\left|q_{s}\right|} \frac{1}{m_{H_{s}}}\right)
\end{aligned}
$$

- λ_{B} is 1st inverse-moment of B_{s} LCDA. R, R_{T} are radiative corrections. ξ is a power-suppressed term $\propto 1 / E_{\gamma}, 1 / m_{H_{s}}, f_{H_{s}}$ the decay constant of H_{s} meson.
- Photon emission from $\mathrm{b}\left(\propto\left|q_{b}\right|\right)$ power-suppressed w.r.t. to emission from s .
- Tensor form factors are scale and scheme dependent. On the lattice we obtained them in $\overline{\mathrm{MS}}$ scheme at $\mu=5 \mathrm{GeV}$.

Extrapolation to the physical B_{s} meson mass (II)

- The scaling relations discussed above are only valid for very energetic photons.
- While we have $E_{\gamma} \propto m_{H_{s}}$, for small $x_{\gamma}=2 E_{\gamma} / m_{H_{s}}$ and not very large $m_{H_{s}}$, there are sizable corrections to the previous relations.
- Assuming vector-meson-dominance (VMD) one has ($W=\{V, A, T V, T A\})$

$$
\begin{gathered}
\frac{F_{W}\left(x_{\gamma}, m_{H_{s}}\right)}{f_{H_{s}}} \propto \frac{1}{\sqrt{r_{W}^{2}+\frac{x_{\gamma}^{2}}{4}}+\frac{x_{\gamma}}{2}-1}+\mathcal{O}\left(\frac{1}{E_{\gamma}}, \frac{1}{m_{H_{s}}}\right) \\
r_{V}=r_{T V}=\frac{m_{H_{s}^{*}}}{m_{H_{s}}}, \quad r_{A}=r_{T A}=\frac{m_{H_{s 1}}}{m_{H_{s}}}
\end{gathered}
$$

- H_{s}^{*} and $H_{s 1}$ are respectively the ground state $J^{P}=1^{-}$and $J^{P}=1^{+}$mesons, made of an heavy quark and a strange anti-quark.
- In the static limit $m_{H_{s}} \rightarrow \infty$ one has $r_{W}=1$ and, for non-zero x_{γ}, the LO scaling laws $F_{W} \propto f_{H_{s}} / x_{\gamma}$ are recovered.
- However, away from the static limit and for small(ish) x_{γ} the quasi-pole structure generates large corrections to the LO scaling laws...

Extrapolation to the physical B_{s} meson mass (III)

Making use of the HQET scaling laws:

$$
\left.\begin{array}{rlrl}
m_{\bar{H}_{s}^{*}}^{2}-m_{\bar{H}_{s}}^{2} & =2 \lambda_{2}+\mathcal{O}\left(\frac{1}{m_{h}}\right), & & \lambda_{2}
\end{array}\right) 0.24 \mathrm{GeV}^{2}, ~\left(\frac{1}{m_{h}}\right), \quad ~ \Lambda_{1} \simeq 0.5 \mathrm{GeV}
$$

the denominator in the VMD Ansatz becomes
$r_{V / T V}=\frac{m_{H_{s}^{*}}}{m_{H_{s}}} \simeq 1+\frac{\lambda_{2}}{m_{H_{s}}^{2}} \Longrightarrow \sqrt{r_{V / T V}^{2}+\frac{x_{\gamma}^{2}}{4}}+\frac{x_{\gamma}}{2}-1 \simeq \frac{\lambda_{2}}{m_{H_{s}}^{2}}+\frac{x_{\gamma}}{2}+\ldots$
$r_{A / T A}=\frac{m_{H_{s 1}}}{m_{H_{s}}} \simeq 1+\frac{\Lambda_{1}}{m_{H_{s}}} \Longrightarrow \sqrt{r_{A / T A}^{2}+\frac{x_{\gamma}^{2}}{4}}+\frac{x_{\gamma}}{2}-1 \simeq \frac{\Lambda_{1}}{m_{H_{s}}}+\frac{x_{\gamma}}{2}+\ldots$
If $x_{\gamma} \ll 2 \lambda_{2} / m_{H_{s}}^{2}\left(x_{\gamma} \ll 2 \Lambda_{1} / m_{H_{s}}\right)$, the presence of a quasi-pole generates an enhancement of $F_{V / T V}\left(F_{A / T A}\right)$ of order $\mathcal{O}\left(m_{H_{s}}^{2}\right)\left(\mathcal{O}\left(m_{H_{s}}\right)\right)$.

To extrapolate to the physical B_{s} we cook up a phenomenological fit Ansatz which combines the scaling laws valid for very hard photons, with the quasi-pole correction due to resonance contributions.

The global fit Ansatz

We extrapolate to the physical B_{s} through a combined fit of the form factors [$z=1 / m_{H_{s}}$, fit parameters are in red]:

$$
\begin{aligned}
& \frac{F_{V}\left(x_{\gamma}, z\right)}{f_{H_{s}}}=\frac{\left|q_{s}\right|}{x_{\gamma}} \frac{1}{1+C_{V} \frac{2 z^{2}}{x_{\gamma}}}\left(K+\left(1+\delta_{z}\right) \frac{z}{x_{\gamma}}+\frac{1}{z^{-1}-\Lambda_{H}}+A_{m} z+A_{x_{\gamma}} \frac{z}{x_{\gamma}}\right) \\
& \frac{F_{A}\left(x_{\gamma}, z\right)}{f_{H_{s}}}=\frac{\left|q_{s}\right|}{x_{\gamma}} \frac{1}{1+C_{A} \frac{2 z}{x_{\gamma}}}\left(K-\left(1+\delta_{z}\right) \frac{z}{x_{\gamma}}-\frac{1}{z^{-1}-\Lambda_{H}}+A_{m} z+\left(A_{x_{\gamma}}+2 K C_{A}\right) \frac{z}{x_{\gamma}}\right) \\
& \frac{F_{T V}\left(x_{\gamma}, z\right)}{f_{H_{s}}}=\frac{\left|q_{s}\right|}{x_{\gamma}} \frac{1+2 C_{V} z^{2}}{1+C_{V} \frac{2 z^{2}}{x_{\gamma}}}\left(K_{T}+\left(A_{m}^{T}+1\right) z+A_{x_{\gamma}}^{T} \frac{z}{x_{\gamma}}+\left(1+\delta_{z}^{\prime}\right) z \frac{1-x_{\gamma}}{x_{\gamma}}\right) \\
& \frac{F_{T A}\left(x_{\gamma}, z\right)}{f_{H_{s}}}=\frac{\left|q_{s}\right|}{x_{\gamma}} \frac{1+2 C_{A}^{T} z}{1+C_{A}^{T} \frac{2 z}{x_{\gamma}}}\left(K_{T}+\left(A_{m}^{T}+1\right) z+A_{x_{\gamma}}^{T} \frac{z}{x_{\gamma}}-\left(1+\delta_{z}^{\prime}-2 K_{T} C_{A}^{T}\right) z \frac{1-x_{\gamma}}{x_{\gamma}}\right)
\end{aligned}
$$

- Fit structure takes into account constraints from the scaling laws valid at large E_{γ} and $m_{H_{s}}$, and contains the resonance corrections (relevant at small x_{γ}).
- We included in the fit also NNLO $1 / E_{\gamma}^{2}, 1 / m_{H_{s}}^{2}$ corrections.
- Some of the constraints appearing in the large energy/mass EFT have been relaxed as they are valid neglecting $\mathcal{O}\left(m_{s}\right)$ and radiative corrections to the power-suppressed terms.

The form factors at the physical point $m_{B_{s}} \simeq 5.367 \mathrm{GeV}$

- Observed steeper $m_{H_{s}}$-dependence of the form factors at small $x_{\gamma} \checkmark$. [Determination of $f_{H_{s}}$ and $f_{B_{s}}$ in backup].
- We performed more than 500 fits, by including or not some of the fit parameters from previous global fit Ansatz, and imposing or not $K=K_{T}$ and $C_{A}=C_{A}^{T}$.
- Different fits combined using AIC or by including in the final average (and with a uniform weight) only those fits having $\chi^{2} / d o f<1.4$ (the two strategies give consistent results, second criterion used to give final numbers).

Fit parameters

Pole parameters:

$$
C_{V}=(0.57(3) \mathrm{GeV})^{2}, \quad C_{A}=0.70(7) \mathrm{GeV}, \quad C_{A}^{T}=0.77(4) \mathrm{GeV}
$$

Expectations from pure VMD:

$$
C_{V}^{\mathrm{VMD}}=\lambda_{2} \simeq(0.5 \mathrm{GeV})^{2}, \quad C_{A}^{\mathrm{VMD}}=C_{A}^{T, \mathrm{VMD}}=\Lambda_{1} \simeq 0.5 \mathrm{GeV}
$$

- In vector channels, where VMD is expected to be a reasonable approximation, substantial agreement between C_{V} and C_{V}^{VMD}.
- In the axial channels, VMD does not work very well: many resonances of masses $m_{\text {res }} \sim m_{H_{s}}+\mathcal{O}\left(\Lambda_{\mathrm{QCD}}\right) \ldots$
- ... which is the reason why for F_{A} and $F_{T A}$ two different parameters C_{A}, C_{A}^{T} have been introduced. C_{A} and C_{A}^{T} of order $\mathcal{O}\left(\Lambda_{Q C D}\right)$, as expected.
- For K and K_{T} we obtain:

$$
K=1.46(10) \mathrm{GeV}^{-1}, \quad K_{T}=1.39(6) \mathrm{GeV}^{-1}
$$

Comparison with previous calculations

- Ref. [3] = Janowski, Pullin, Zwicky, JHEP '21, light-cone sum rules.
- Ref. [4] = Kozachuk, Melikhov, Nikitin, PRD '18, relativistic dispersion relations.
- Ref. [5] = Guadagnoli, Normand, Simula, Vittorio, JHEP '23, VMD/Lattice.

With a few exceptions, our results for the form factors differ significantly from the earlier estimates (which also differ from each other).

A quick look at the (small) form factor \bar{F}_{T}

The lattice determination of the form factor \bar{F}_{T} is hindered by the presence of problems of analytic continuation when γ^{*} is emitted by a strange quark.

For $q^{2} \gtrsim m_{\phi}^{2}$ the relevant Minkowskian correlation functions needed to evaluate \bar{F}_{T} cannot be analytically continued to Euclidean spacetime. \bar{F}_{T} also develops an immaginary part.

Recently, we have developed a new method, based on spectral reconstruction techniques, which allows to circumvent this problem [Frezzotti et al., PRD '23]. [Backup]

\Longleftarrow b-quark contribution not affected by this issue. Mass extrapolation carried out using VMD-inspired Ansatz assuming Υ-resonances dominance.
\Longleftarrow s-quark contribution develops imag. part. Current uncertainty on \bar{F}_{T}^{s} is 100%. OK, given that $\bar{F}_{T} \ll F_{T A}, F_{T V}$.

From the form factors to the branching fractions

The differential branching fraction for $\bar{B}_{s} \rightarrow \mu^{+} \mu^{-} \gamma$ can be decomposed as a sum of three terms

$$
\frac{\mathrm{d} \mathcal{B}}{d x_{\gamma}}=\frac{\mathrm{d} \mathcal{B}_{\mathrm{PT}}}{d x_{\gamma}}+\frac{\mathrm{d} \mathcal{B}_{\mathrm{INT}}}{d x_{\gamma}}+\frac{\mathrm{d} \mathcal{B}_{\mathrm{SD}}}{d x_{\gamma}} \quad\left[q^{2}=m_{B_{s}}^{2}\left(1-x_{\gamma}\right)\right]
$$

- $\mathrm{d} \mathcal{B}_{\mathrm{PT}} / \mathrm{dx}_{\gamma}$ is the point-like contribution $\left(\propto f_{B_{s}}^{2}\right)$.
- It suffers from an IR-divergence $\left(\mathrm{d} \mathcal{B} / \mathrm{dx}_{\gamma} \propto 1 / \mathrm{x}_{\gamma}\right.$ at small $\left.x_{\gamma}\right)$, which is then cancelled by the virtual-photon correction to $\bar{B}_{s} \rightarrow \mu^{+} \mu^{-}$through the Block-Nordsieck mechanism.
- $\mathrm{d} \mathcal{B}_{\text {INT }} / \mathrm{dx}_{\gamma}$ is the interference contribution and depends linearly on the form factors.
- $\mathrm{d} \mathcal{B}_{\mathrm{SD}} / \mathrm{dx} \mathrm{x}_{\gamma}$ is the structure-dependent contribution and is quadratic in the form factors.

Both the interference and structure-dependent contributions are infrared finite.

Adding contributions from penguin operators

We did not compute from first-principles the contributions from four-quark and chromomagnetic operators $\mathcal{O}_{i=1-6,8}$.

- It is expected that among these contributions the dominant one in $\bar{B}_{s} \rightarrow \mu^{+} \mu^{-} \gamma$ at $q^{2}>(4.2 \mathrm{GeV})^{2}$ is the charming-penguin diagram stemming from \mathcal{O}_{1-2} due to $J^{P}=1^{-}$charmonium resonances.

This contribution can be included as a shift of the Wilson coefficient C_{9} :
$C_{9} \rightarrow C_{9}^{\text {eff }}\left(q^{2}\right)=C_{9}-\Delta C_{9}\left(q^{2}\right)$
$\delta_{V}=\left|k_{V}\right|-1=0$ holds in the factorization approximation.

In analogy with previous works [Guadagnoli et al, JHEP '17, '23] we model $\Delta C_{9}\left(q^{2}\right)$ as

$$
\Delta C_{9}\left(q^{2}\right)=\frac{9 \pi}{\alpha_{\mathrm{em}}^{2}} \bar{C} \sum_{V}\left|k_{V}\right| e^{i \delta_{V}} \frac{m_{V} B\left(V \rightarrow \mu^{+} \mu^{-}\right) \Gamma_{V}}{q^{2}-m_{V}^{2}+i m_{V} \Gamma_{V}}
$$

$$
\bar{C}=C_{1}+C_{2} / 3 \simeq-0.2
$$

$V_{c \bar{c}}$	$M_{V_{c \bar{c}}}[\mathrm{GeV}]$	$\Gamma[\mathrm{MeV}]$	$\mathcal{B}\left(V_{c \bar{c}} \rightarrow \mu^{+} \mu^{-}\right)$
J / ψ	$3.096900(6)$	$0.0926(17)$	$0.05961(33)$
$\Psi(2 S)$	$3.68610(6)$	$0.294(8)$	$8.0(6) \cdot 10^{-3}$
$\Psi(3770)$	$3.7737(4)$	$27.2(1.0)$	${ }^{*} 9.6(7) \cdot 10^{-6}$
$\Psi(4040)$	$4.039(1)$	$80(10)$	${ }^{*} 1.07(16) \cdot 10^{-5}$
$\Psi(4160)$	$4.191(5)$	$70(10)$	${ }^{*} 6.9(3.3) \cdot 10^{-6}$
$\Psi(4230)$	$4.2225(24)$	$48(8)$	$3.2(2.9) \cdot 10^{-5}$
$\Psi(4415)$	$4.421(4)$	$62(20)$	$2(1) \cdot 10^{-5}$
$\Psi(4660)$	$4.630(6)$	72_{-12}^{+14}	not seen

We assume uniformly distributed phases $\delta_{V} \in[0,2 \pi]$ and $\left|k_{V}\right|=1.75(75)$.

The differential branching fractions

- For $x_{\gamma} \gtrsim 0.15$, the SD is dominant over the PT contribution.
- For $x_{\gamma} \gtrsim 0.2$, charming-penguin uncertainties become dominant, due to the presence of charmonium states which overlap with the x_{γ}-region considered.
- INT contribution is always about two orders of magnitude smaller than SD.

The branching fractions

$$
\mathcal{B}\left(x_{\gamma}^{\mathrm{cut}}\right)=\int_{0}^{x_{\gamma}^{\mathrm{cut}}} \mathrm{~d} x_{\gamma} \frac{\mathrm{d} \mathcal{B}}{\mathrm{~d} x_{\gamma}} \quad x_{\gamma}^{\mathrm{cut}} \equiv 1-\frac{q_{\mathrm{cut}}^{2}}{m_{B_{s}}^{2}}
$$

- $E_{\gamma}^{\text {cut }}=x_{\gamma}^{\text {cut }} m_{B_{s}} / 2$ is the upper-bound on the measured photon energy.

- SD contribution dominated by vector form factor F_{V}. Tensor form-factor contributions suppressed by small Wilson coefficient $C_{7} \ll C_{9}, C_{10}$.
- At $x_{\gamma}^{\text {cut }} \sim 0.4$ our estimate of charming-penguins uncertainties is around 30%.

Comparison with current LHCb upper-bound for $x_{\gamma}^{\text {cut }} \sim 0.166$.

$$
\mathcal{B}_{\mathrm{SD}}^{\mathrm{LHCb}}(0.166)<2 \times 10^{-9}, \quad \mathcal{B}_{\mathrm{SD}}(0.166)=6.9(9) \times 10^{-11} \quad[\text { This work] }
$$

Comparison with previous works

- Ref. [3] $=$ Janowski, Pullin , Zwicky , JHEP '21, light-cone sum rules.
- Ref. [4] $=$ Kozachuk, Melikhov, Nikitin , PRD '18, relativistic dispersion relations.
- Ref. [5] = Guadagnoli, Normand, Simula, Vittorio, JHEP '23, VMD/Lattice.

Differences with earlier estimates can be traced back to the fact that our determination of F_{V} (which gives the dominant contribution to the branching) is larger (smaller) than the one of Refs. [4-5] (Ref. [3]) by a factor of about 1.5-2.

Conclusions

- We have presented a first-principles lattice calculation of the form factors $F_{V}, F_{A}, F_{T V}, F_{T A}$ entering the $\bar{B}_{s} \rightarrow \mu^{+} \mu^{-} \gamma$ decay, in the electroquenched approximation.
- Systematic errors have been controlled thanks to the use of gauge configurations produced by the ETM Collaboration, which correspond to four values of the lattice spacing $a \in[0.057: 0.09] \mathrm{fm}$, and through the use of five different heavy-strange masses $m_{H_{s}} \in\left[m_{D_{s}}: 2 m_{D_{s}}\right]$.
- Presently our result for the branching fractions have uncertainties ranging from $\sim 15 \%$ at $\sqrt{q_{\mathrm{cut}}^{2}}=4.9 \mathrm{GeV}$ to $\sim 30 \%$ at $\sqrt{q_{\mathrm{cut}}^{2}}=4.2 \mathrm{GeV}$.
- At small $q_{\text {cut }}^{2}$ uncertainty dominated by the charming-penguins which we included using a phenomenological parameterization.

Outlook:

- Evaluate electro-unquenching effects.
- Evaluate charming-penguins contributions from first-principles.
- Simulate on finer lattice spacings to be able to reach higher $m_{H_{s}}$ and reduce the impact of the mass-extrapolation.

Thank you for the attention!

Backup

Determination of $f_{H_{s}}$

We determined the decay constant corresponding to the five simulated values of the heavy-strange mass $m_{H_{s}}$ on the same ensembles used to determine the form factors.

- $f_{H_{s}}$ determined using two different estimators, which only differ by $\mathcal{O}\left(a^{2}\right)$ cut-off effects.
- 1st estimator: $f_{H_{s}}$ determined from mesonic pseudoscalar two-point correlation function (std method). We refer to this determination as $f_{H_{s}}^{2 \mathrm{pt}}$.
- 2nd estimator: from the zero-momentum correlation function:

$$
\int \mathrm{d}^{4} y \hat{T}\langle 0| J_{\mathrm{em}}^{i}(y) J_{A}^{i}(0)\left|\bar{H}_{s}(\mathbf{0})\right\rangle \propto f_{H_{s}}
$$

- $J_{A}^{\nu}=\bar{s} \gamma^{\nu} \gamma_{5} h$ is the axial current. We refer to this determination as $f_{H_{s}}^{3 \mathrm{pt}}$.

Combined continuum-extrapolation of $f_{H_{s}}^{2 \mathrm{pt}}$ and $f_{H_{s}}^{3 \mathrm{pt}}$ using the Ansatz:

$$
\begin{aligned}
& \phi_{H_{s}}^{2 \mathrm{pt}} \equiv f_{H_{s}}^{2 \mathrm{pt}} \sqrt{m_{H_{s}}}=A+B^{2 \mathrm{pt}} a^{2}+D^{2 \mathrm{pt}} a^{4} \\
& \phi_{H_{s}}^{3 \mathrm{pt}} \equiv f_{H_{s}}^{3 \mathrm{pt}} \sqrt{m_{H_{s}}}=A+B^{3 \mathrm{pt}} a^{2}+D^{3 \mathrm{pt}} a^{4}
\end{aligned}
$$

Continuum-limit extrapolation of $\phi_{H_{s}}=f_{H_{s}} \sqrt{m_{H_{s}}}$

Extrapolation to the physical B_{s} mass

To extrapolate to the physical B_{s} mass, we employed the following HQET Ansatz

$$
\phi\left(m_{H_{s}}\right)=\underbrace{C_{\gamma^{0} \gamma^{5}}\left(m_{h}, m_{h}\right)}_{\text {HQET/QCD matching }} \exp \underbrace{\left\{\int_{0}^{\alpha_{s}\left(m_{h}\right)} \frac{\gamma_{\tilde{J}}\left(\alpha_{s}\right)}{2 \beta\left(\alpha_{s}\right)} \frac{d \alpha_{s}}{\alpha_{s}}\right\}}_{\text {HQET-evolutor }}\left(A+\frac{B}{m_{H_{s}}}\right)
$$

- A and B are free fit parameters.
- m_{h} should be identified with the pole mass $m_{h}^{\text {pole }}$ (notoriously affected by renormalon ambiguities). We used in place of the pole mass the meson mass: $m_{H_{s}}-m_{h}^{\text {pole }} \simeq \mathcal{O}\left(\Lambda_{\mathrm{QCD}}\right)$.

Determination of the form factor \bar{F}_{T}

The form factor \bar{F}_{T}, is the smallest of all the form factors (and barely relevant within present accuracy). It can be computed from the knowledge of the following hadronic tensor

$$
H_{\bar{T}}^{\mu \nu}(p, k)=i \int d^{4} x e^{i(p-k) x} \hat{\mathrm{~T}}\langle 0| J_{\bar{T}}^{\nu}(0) J_{\mathrm{em}}^{\mu}(x)\left|\bar{B}_{s}(\mathbf{0})\right\rangle=-\varepsilon^{\mu \nu \rho \sigma} k_{\rho} p_{\sigma} \frac{\bar{F}_{T}}{m_{B_{s}}}
$$

where $\left(Z_{T}\right.$ is the renormalization constant of tensor current)

$$
J_{\bar{T}}^{\nu}=-i Z_{T}(\mu) \bar{s} \sigma^{\nu \rho} b \frac{k_{\rho}}{m_{B_{s}}}
$$

- When the virtual photon γ^{*} is emitted by a strange quark, the presence of $J^{P}=1^{-} s \bar{s}$ intermediate states forbid the analytic continuation of the relevant correlation functions from Minkowskian to Euclidean spacetime (where we perform MC simulations).

The b-quark contribution to \bar{F}_{T}

Let us start discussing the simpler contribution \bar{F}_{T}^{b}, due to the emission of γ^{*} from a b-quark.

- In this case the calculation proceeds as in the case of the other form factors $F_{W}, W=\{V, A, T V, T A\}$, i.e. the hadronic tensor $H_{\bar{T}_{b}}^{\mu \nu}$ can be directly evaluated from Euclidean spacetime simulations.
- We performed simulations for three value of the heavy-strange meson mass $m_{H_{s}} \in\left[m_{D_{s}}: 1.8 m_{D_{s}}\right.$] (or in terms of the heavy quark mass m_{h} for $m_{h} / m_{c}=1,1.5,2.5$), and two values of the lattice spacings (the two gauge ensembles are called B64 and D96). Very small cut-off effects observed.

Mass extrapolation of \bar{F}_{T}^{b} (I)

The extrapolation of $\bar{F}_{T}^{b}\left(x_{\gamma}\right)$ to the physical mass $m_{B_{s}}=5.367 \mathrm{GeV}$ is carried out using a VMD inspired Ansatz.

- \bar{F}_{T}^{b} is expected to be dominated by $J^{P}=1^{-} b \bar{b}$ resonance contributions (e.g. $\Upsilon(1 S), \Upsilon(2 S), \Upsilon(3 S), \ldots)$, which can be approximated as stable states.
- Using an unphysical heavy quark mass $m_{h}<m_{b}$ these states will be fictitious $h \bar{h}, J^{P}=1^{-}$, intermediate states.
- The contribution to \bar{F}_{T}^{b} of a given resonance " n " of mass m_{n} and electromagnetic decay constant f_{n} is given by

$$
\bar{F}_{T, n}^{b}\left(x_{\gamma}\right)=\frac{q_{b} f_{n} m_{n} g_{n}^{+}(0)}{E_{n}\left(E_{n}+E_{\gamma}-m_{H_{s}}\right)}+\text { regular terms }
$$

where $E_{n}=\sqrt{m_{n}^{2}+E_{\gamma}^{2}}$ and (η is the polarization of the vector resonance)

$$
\langle n(-\boldsymbol{k}, \eta)| \bar{s} \sigma^{\mu \nu} h\left|\bar{H}_{s}(\mathbf{0})\right\rangle=i \eta_{\beta}^{*} \epsilon^{\mu \nu \beta \gamma} g_{n}^{+}\left(p_{\gamma}^{2}\right)\left(p+q_{n}\right)_{\gamma}+\ldots
$$

with $q_{n}=\left(E_{n},-\boldsymbol{k}\right), p_{\gamma}=p-q_{n}$.

Mass extrapolation of \bar{F}_{T}^{b} (II)

In the heavy-quark limit the following scaling laws hold

$$
f_{n} \propto \frac{1}{\sqrt{m_{h}}}+\ldots \propto \frac{1}{\sqrt{m_{H_{s}}}}+\ldots, \quad \frac{m_{n}}{m_{H_{s}}}=2+\frac{\Lambda_{T}^{n}}{m_{H_{s}}}+\ldots
$$

- $\Lambda_{T}^{n} \simeq \mathcal{O}\left(\Lambda_{\mathrm{QCD}}\right)$ and ellipses indicate NLO terms in the heavy-quark expansion.
- Using these relations $\bar{F}_{T, n}^{b}$ can be approximated by

$$
\bar{F}_{T, n}^{b}\left(x_{\gamma}\right)=\frac{q_{b}}{m_{H_{s}}} \frac{f_{n} g_{n}^{+}(0)}{1+\frac{x_{\gamma}}{2}+\frac{\Lambda_{T}^{n}}{m_{H_{s}}}}\left(1+\mathcal{O}\left(x_{\gamma}, \frac{\Lambda_{\mathrm{QCD}}}{m_{H_{s}}}\right)\right)
$$

- Our strategy is to replace the tower of resonance contributions, with a single effective-pole

$$
\bar{F}_{T}^{b}\left(x_{\gamma}, m_{H_{s}}\right)=\frac{1}{m_{H_{s}}} \frac{A+B x_{\gamma}}{1+\frac{x_{\gamma}}{2}+\frac{\Lambda_{T}}{m_{H_{s}}}}
$$

- A, B and Λ_{T} are free-fit parameters. Our Ansatz assumes $g_{n}^{+} \propto \sqrt{m_{H_{s}}}$, which is consistent with our data.

Final results for \bar{F}_{T}^{b}

We have performed a global fit of the $x_{\gamma^{-}}$and $m_{H_{s}}$-dependence of our lattice data, using the Ansatz in the previous slide.

- Our VMD-inspired Ansatz (which contains only 3 free-parameters) perfectly captures the x_{γ} and $m_{H_{s}}$ dependence of the data.
- The magenta band corresponds to the extrapolated results at $m_{B_{s}}=5.367 \mathrm{GeV}$. Effective-pole located at $2 m_{H_{s}}+\Lambda_{T} \simeq 10.4(1) \mathrm{GeV}$.
- As anticipated, this contribution turns out to be one order of magnitude suppressed w.r.t. $F_{T V}$ and $F_{T A}$.

The strange-quark contribution \bar{F}_{T}^{s}

The hadronic tensor $H_{\overline{T_{s}}}^{\mu \nu}$ cannot be analytically continued to Euclidean spacetime [$J_{\text {em }}^{s}=q_{s} \bar{s} \gamma^{\mu} s, \hat{H}$ is the Hamiltonian]

$$
\begin{aligned}
& H_{\bar{T}_{s}}^{\mu \nu}(p, k)=i \int_{-\infty}^{\infty} d t e^{i\left(m_{B_{s}}-E_{\gamma}\right) t}\langle 0| J_{\bar{T}}^{\nu}(0) J_{\mathrm{em}}^{s}(0,-\boldsymbol{k})\left|\bar{B}_{s}(\mathbf{0})\right\rangle \\
& =\langle 0| J_{\bar{T}}^{\nu}(0) \frac{1}{\hat{H}-E_{\gamma}-i \varepsilon} J_{\mathrm{em}}^{s, \mu}(0,-\boldsymbol{k})\left|\bar{B}_{s}(0)\right\rangle \\
& +\langle 0| J_{\mathrm{em}}^{s, \mu}(0,-\boldsymbol{k}) \frac{1}{\hat{H}+E_{\gamma}-m_{B_{s}}-i \varepsilon} J_{\bar{T}}^{\nu}(0)\left|\bar{B}_{s}(0)\right\rangle=H_{\bar{T}_{s}, 1}^{\mu \nu}(p, k)+H_{\bar{T}_{s}, 2}^{\mu \nu}(p, k)
\end{aligned}
$$

- Analytic continuation $t \rightarrow$-it possible only if the following positivity-conditions are met

$$
\langle n| \hat{H}-E_{\gamma}|n\rangle>0, \quad\langle n| \hat{H}+E_{\gamma}-m_{B_{s}}|n\rangle>0
$$

- $|n\rangle$ is any of the intermediate-states that can propagate between the electromagnetic and tensor currents.
- The second condition is equivalent to $q^{2}<m_{n}^{2}$ (m_{n} is the rest-energy of the intermediate state $|n\rangle$)...
- ...which is violated because the smallest m_{n} here is $2 m_{K}$. In the case of the b-quark this is instead m_{Υ}. The first condition is instead always satisfied.

The spectral-density representation

The main idea for circumventing the problem of analytic continuation is to consider the spectral-density representation of the hadronic tensor $\left[E=m_{B_{s}}-E_{\gamma}\right]$

$$
H_{\bar{T}_{s}, 2}^{\mu \nu}(E, \boldsymbol{k})=\lim _{\varepsilon \rightarrow 0^{+}} \int_{E^{*}}^{\infty} \frac{d E^{\prime}}{2 \pi} \frac{\rho^{\mu \nu}\left(E^{\prime}, \boldsymbol{k}\right)}{E^{\prime}-E-i \varepsilon}=\mathrm{PV} \int_{E^{*}}^{\infty} \frac{d E^{\prime}}{2 \pi} \frac{\rho^{\mu \nu}\left(E^{\prime}, \boldsymbol{k}\right)}{E^{\prime}-E}+\frac{i}{2} \rho^{\mu \nu}(E, \boldsymbol{k})
$$

- The spectral-density $\rho^{\mu \nu}$ is related to the Euclidean correlation function $C^{\mu \nu}(t, \boldsymbol{k})$, which we can directly compute on the lattice, via

$$
\underbrace{C^{\mu \nu}(t, \boldsymbol{k})}_{\text {lattice input }}=\int_{E^{*}}^{\infty} \frac{d E^{\prime}}{2 \pi} e^{-E^{\prime} t} \rho^{\mu \nu}\left(E^{\prime}, \boldsymbol{k}\right)
$$

- Unfortunately, determining $\rho^{\mu \nu}$ from $C^{\mu \nu}(t, \boldsymbol{k})$, which is computed on the lattice at a discrete set of times and with a finite accuracy, is not possible (inverse Laplace transform problem).
- The regularized quantity that we can evaluate, exploiting the Hansen-Lupo-Tantalo method [PRD 99 '19], is a smeared version of the hadronic tensor, obtained by considering non-zero values of the Feynman's ε

$$
H_{\bar{T}_{s}, 2}^{\mu \nu}(E, \boldsymbol{k} ; \varepsilon)=\int_{E^{*}}^{\infty} \frac{d E^{\prime}}{2 \pi} \frac{\rho^{\mu \nu}\left(E^{\prime}, \boldsymbol{k}\right)}{E^{\prime}-E-i \varepsilon}
$$

The smeared form factor

The evaluation of the hadronic tensor at finite ε leads to a smeared form factor $\bar{F}_{T}^{s}\left(x_{\gamma} ; \varepsilon\right)$. In the limit of vanishing ε one has

$$
\lim _{\varepsilon \rightarrow 0^{+}} \bar{F}_{T}^{s}\left(x_{\gamma} ; \varepsilon\right)=\bar{F}_{T}^{s}\left(x_{\gamma}\right)
$$

- As we have shown in [Frezzotti et al. PRD 108 '23], the corrections to the vanishing ε limit are of the form

$$
\bar{F}_{T}^{s}\left(x_{\gamma} ; \varepsilon\right)=\bar{F}_{T}^{s}\left(x_{\gamma}\right)+A_{1} \varepsilon+A_{2} \varepsilon^{2}+\mathcal{O}\left(\varepsilon^{3}\right)
$$

- The onset of the polynomial regime depends on the typical size $\Delta(E)$ of the interval around E on which the hadronic tensor is significantly varying, and one needs $\varepsilon \ll \Delta(E)$.
- We evaluated $\bar{F}_{T}\left(x_{\gamma} ; \varepsilon\right)$ for several values of $\varepsilon / m_{H_{s}} \in[0.4: 1.3]$, and then performed a polynomial extrapolation in ε.

The vanishing- ε extrapolation

Both the real and imaginary part of the smearead form factor $\bar{F}_{T}^{s}\left(x_{\gamma} ; \varepsilon\right)$ show an almost linear behaviour at small ε. Besides the polynomial extrapolations, we have performed additional model-dependent, non-polynomial, extrapolations, to have a conservative estimate of the possible systematics associated to the vanishing- ε limit.

- Very small x_{γ} dependence observed.
- To have a conservative error estimate, we take the results at the largest simulated mass $m_{H_{s}} \simeq 1.78 m_{D_{s}}$ as a bound for the value of the form factor at the physical point, $m_{H_{s}}=m_{B_{s}}$.

