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Motivation 1/18

▶ goal: extract as much information on leading-twist B light-cone distribution
amplitude (LCDA) ϕ+(ω) from information on B → γ(∗) form factors

▶ B → γ form factors are function of single kinematic variable Eγ
▶ collinear factorization of FFs at large Eγ ∼ MB/2

[Korchemsky et al. hep-ph/9911427; many developments since; see Martin’s talk]

▶ dominant sensitivity to “inverse moment” of leading LCDA ϕ+

L0 =

∫ ∞

0

dω

ω
ϕ+(ω)

▶ collinear factorization suffers from soft contributions even at Eγ = MB/2, i.e.,
maximal Eγ in B → γℓ−ν decay

▶ QCD sum rule approach w/ hard-to-quantify systematic unc. [Braun, Khodjamirian 1210.4453]

▶ Photon LCDA sum rule suffers from similar problems [Wang, Shen 1803.06667]

▶ remains systematic theory barrier to cleanly extract ϕ+ properties



Possible Solution? 2/18

▶ Several groups suggested investigating similar process with off-shell photon
[Wang 1606.03080; Bharucha et al. 2102.03193; Beneke et al. 2102.10060; Ivanov, Melikhov 2107.07247]

B(p) → γ(∗)(q)[→ ℓ′+ℓ′−]ℓ−(k1)ν(k2) ℓ 6= ℓ′

▶ soft contributions are expected to increase due to resonant enhancement at
q2 > 0

▶ however: apparent suppression of soft contributions at q2 < 0 or k2 < 0
▶ not an “unphysical process”
▶ form factors at q2 < 0 describe ℓ′−B → ℓ′−ℓ−ν scattering



Suggested Strategy 3/18

▶ collect FF data (experimental, lattice) at q2, k2 ≥ 0

▶ derive dispersion relations to extrapolate FFs to a fixed value of q2
0 < 0 and/or

k2
0 < 0 1st part

▶ compare extrapolated results with collinear factorization predictions to extract
information on B-meson LCDAs 2nd part



Dispersion Relations for B → γ∗

Form Factors



Aim 4/18

1. project hadronic Lorentz tensor onto a basis of 4 scalar-valued hadronic form
factors Fi(q2, k2)

2. determine dispersion relations that describe evolution of the Fi in both q2

(weak momentum transfer) and k2 (e.m. momentum transfer)

Requirements: choice of basis must be free of “artificial” singularities (i.e., of
kinematic origin)

▶ some suspicious results in the literature [Ivanov,Melikhov 2107.07247 v1&v2]

▶ collinear factorization results known for 3 out of 4 FFs [Beneke et al. 2102.10060]



Ward Identity and all that . . . 5/18

using currents Jµhad = uγµ(1− γ5)b and Jµlep = ℓγµ(1− γ5)ν, define

QBTµνhad =

∫
dx expiqx 〈0|T{Jµe.m.(x)Jνhad(0)}|B−〉

〈ℓ−νℓγ∗|Jlep,ν(0)Jhadν(0)|B−〉 = eQBε
∗
µ

[
Tµνhad + TµνFSR

]
[uγν(1− γ5)v ]

▶ only sum of tensors fulfil Ward identity

qµ

[
Tµνhad + TµνFSR

]
= 0 = qµ

[
Tµνhad,h. + Tµνhad,inh. + TµνFSR

]
= qµ

[
Tµνhad,h.

]
▶ TFSR is known, Thad is described in terms of B → γ∗ form factors
▶ split hadronic tensor in homogeneous and inhomogeneous parts

▶ inhomogeneous part chosen such that Thad,inh. + TFSR fulfils Ward identity in sum
▶ homogeneous part Thad,h. fulfils Ward identity on its own



Issues and Approach 6/18

issues:
▶ Ward identity fixes Thad,inh. only incompletely

▶ finding: different choices of Thad,inh. can induce kinematic singularities in
homogeneous part despite restoring the Ward identity!

▶ for purely electromagnetic form factors, Bardeen-Tung-Tarrach (BTT) procedure
yields FF basis w/o kinematic singularities [Bardeen, Tung 1968; Tarrach 1975]

▶ not applicable: B− → γ∗ FFs describe both e.m. and weak currents



Issues and Approach 6/18

issues:
▶ Ward identity fixes Thad,inh. only incompletely

▶ finding: different choices of Thad,inh. can induce kinematic singularities in
homogeneous part despite restoring the Ward identity!

▶ for purely electromagnetic form factors, Bardeen-Tung-Tarrach (BTT) procedure
yields FF basis w/o kinematic singularities [Bardeen, Tung 1968; Tarrach 1975]

▶ not applicable: B− → γ∗ FFs describe both e.m. and weak currents

our approach [Kubis, Kürten, DvD, Zanke 2210.09832]

1. clarify parametrization of Thad,inh.; check against explicit Chiral Perturbation
Theory results for K → γ∗ℓ−ν FFs

2. adapt BTT procedure for use in combined e.m.- and weak-current induced FFs
→ describe Thad,h. in terms of FFs free of kinematic singularities



Step 1: Generic Form for Inhomogeneity 7/18

1. Ward identity is satisfied for inhomogeneities of form:

Tµνhad,inhom = −fB
[
agµν + bkµkν

k · q + ckµqν

k · q + (1− b)q
µkν

q2 + (1− a − c)q
µqν

q2

]
,

2. in the literature

3. difference between any of these choices is homogeneous but shuffles
singularities from inhomogeneous part into homogeneous part or vice versa

4. we identify only one choice (A) which leads to 1/[k2 −M2
B ] pole only in the

pseudoscalar form factor
compatible with ChPT results in K → γ∗ form factors [Bijnens et al. hep-ph/9209261]



Step 2: Use the Pseudoscalar Current! 8/18

1. the analogue to the QED Ward identity for the weak current reads

kνTµνhad,hom = Tµhad,P,hom

▶ Thad,P is obtained from Thad by replacing Jhad → Jhad,P = (mb +mu)[uγ5b]
▶ ditto for the homogeneous parts

2. split the homogeneous tensor into two parts:

Tµνhad,hom = T̃µνhad,hom +
kν

k2 T
µ
had,P,hom kν T̃µνhad,hom = 0

3. apply the regular BTT procedure to T̃µνhad,hom and Tµhad,P,hom



Result 9/18

Tµνhad,hom. =
1
MB

[
(k · q)gµν − kµqν

]
F1 +

1
MB

[q2

k2 k
µkν − k · q

k2 qµkν + qµqν − q2gµν
]
F2

+
1
MB

[k · q
k2 qµkν − q2

k2 k
µkν

]
F3 +

i
MB

εµνρσkρqσF4

well-defined spin/parity quantum numbers:

▶ F1, F2: axialvector form factors; k2 poles are JP = 1+, e.g., the B1

▶ F3: pseudoscalar form factor; k2 poles are JP = 0−, e.g., the B
▶ F4: vector form factor; k2 poles are JP = 1−, e.g., the B∗

▶ diagonalizes the rate in the limit mℓ → 0, i.e., dΓ/dq2 6⊃ FiF∗
j + F∗

i Fj (except for FSR
terms)



Systematic Parametrization of
ϕ+(ω)



Definition 10/18

matrix element of light-cone operator in HQET normalized to the matrix element of
the corresponding local operator [Grozin hep-ph/9607366]

ϕ̃+(τ ;µ) =
〈0|q(τn) [τn, 0] /nγ5 hv(0)|B(v)〉

〈0|q(0) /nγ5 hv(0)|B(v)〉
.

with n2 = 0

Fourier transform commonly used:

ϕ+(ω) =

∫ +∞

−∞

dτ

2π ϕ̃+(τ)

more LCDAs exist, but let’s start somewhere “easy”



State of the Art 11/18

▶ ϕ+ is modelled, typically as an exponential ansatz

▶ ϕ+ develops a non-exponential “radiative tail” under RG evolution
[Lee, Neubert hep-ph/0509350]

▶ some models account for this, chiefly the one from the same paper by Lee &
Neubert (pin the tail on an exponential model)

▶ further models inspired by π LCDA / experience in modelling γ∗ → πγ

[Beneke et al. 1804.04962]



Properties of ϕ+ / ϕ̃+ 12/18

P1 ϕ̃+(τ) is analytic in the half plane Im τ < 0
P2 ϕ̃+(τ) is analytic on the real axis, except for a (log.) singular point at τ = 0.

⇒ ϕ̃+(τ) is integrable on the real axis and∫ +∞

−∞
dτϕ+(τ) = 0

P3 ϕ̃+(τ − iε) converges toward ϕ̃+(τ) almost everwhere for τ ∈ R

P1 to P3 imply that the Fourier transform

ϕ+(ω) =

∫ +∞

−∞

dτ

2π ϕ̃+(τ)

exists and ∫ +∞

−∞

dτ

2π
∣∣∣ϕ̃+(τ)

∣∣∣2 =

∫ ∞

0
dω |ϕ+(ω)|2 < ∞



Idea: 2-Norm 13/18

define a “2-norm” for ϕ+

χ ≡
∞∫

−∞

dτ

2π
∣∣∣ϕ̃+(τ)

∣∣∣2 |1+ iω0τ |2

which is finite but unknown ω0: intrinsic hadronic scale

▶ find parametrization for ϕ+ that diagonalizes χ, i.e.:

ϕ+(τ) =
1
ω0

∑
n

anfn(τ) so that ω0χ ∼
∑
n

|an|2

▶ if χ were known, then coefficients would be bounded: −√
χ < an <

√
χ



Idea: Conformal Map 14/18

▶ map lower halfplane in τ to interior of unit circle
in y

τ 7→ y(τ) = iω0τ − 1
iω0τ + 1

▶ account for weight |1+ iω0τ |2 in the norm and
Jacobian of the map

▶ Taylor expand analytical remainder of ϕ+

around y = 0 (τ = −i/ω0)

ϕ+(τ) =
1

(1+ iω0τ) (1+ iω0τ)

∑
n

anyn(τ)

χ =
1

2ω0

∑
n

|an|2

Re τ

Im τ

0

Re y(τ)

Im y(τ)

1−1



Consequences 15/18

▶ generalisation of an existing model
▶ replicate by keeping only the n = 0 term

▶ even truncated parametrisation can replicate features of the radiative tail
▶ “[it] generalizes the Grozin-Neubert relations [...] to one-loop accuracy [...]”
▶ Lee-Neubert model is reasonably replicated with truncation at 3rd order

▶ “pathological” models can only be replicated with some difficulty
▶ example: free parton model



Pheno Applications 16/18

▶ several way to account for RG evolution with the parametrization
▶ preferred and numerically fastest: evolve coefficients an, evolution matrix is only

dependent on scales and ω0

▶ inverse moment

L0 =
1
λB

=

∫ ∞

0

dω

ω
ϕ+(ω) =

1
ω0

∞∑
n=0

a2n
2n+ 1

▶ collinear factorization result for B− → γ form factors, available in EOS



Pheno Outlook 17/18

▶ global fit to all available information on ϕ+:
▶ B → γ(∗) FF from exp / Lattice QCD;

short-distance expansion of ϕ+(τ)

▶ adhoc assumption so far: value of χ →
Lattice QCD?

▶ right: preliminary plots from sensitvity study,
using ficticious inputs in underconstrained fit
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Conclusion



Conclusion 18/18

▶ theory work onging, need to get rid of soft contributions to increase sensitivity
to ϕ+ in collinear factorization results for B → γ(∗)

▶ one approach: extrapolate to spacelike momentum transfer q2 / k2

▶ part 1: revisit dispersion relations to ensure that extrapolation works
▶ clarified some issues in the literature

▶ part 2: go beyond adhoc modelling of ϕ+ with systematic parametrisation
▶ Lattice QCD input on 2-norm of ϕ+ would be very helpful
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