Toward Extracting B LCDAs from Data

Danny van Dyk
based on works with

- 2203.15679 - Thorsten Feldmann \& Philip Lüghausen
- 2210.09832 - Bastian Kubis, Stephan Kürten, Marvin Zanke Institute for Particle Physics Phenomenology, Durham
- goal: extract as much information on leading-twist \bar{B} light-cone distribution amplitude (LCDA) $\phi_{+}(\omega)$ from information on $\bar{B} \rightarrow \gamma^{(*)}$ form factors
- $B \rightarrow \gamma$ form factors are function of single kinematic variable E_{γ}
- collinear factorization of FFs at large $E_{\gamma} \sim M_{B} / 2$
[Korchemsky et al. hep-ph/9911427; many developments since; see Martin's talk]
- dominant sensitivity to "inverse moment" of leading LCDA ϕ_{+}

$$
L_{0}=\int_{0}^{\infty} \frac{d \omega}{\omega} \phi_{+}(\omega)
$$

- collinear factorization suffers from soft contributions even at $E_{\gamma}=M_{B} / 2$, i.e., maximal E_{γ} in $B \rightarrow \gamma \ell^{-} \bar{\nu}$ decay
- QCD sum rule approach w/ hard-to-quantify systematic unc.
- Photon LCDA sum rule suffers from similar problems
- remains systematic theory barrier to cleanly extract ϕ_{+}properties
- Several groups suggested investigating similar process with off-shell photon
[Wang 1606.03080; Bharucha et al. 2102.03193; Beneke et al. 2102.10060; Ivanov, Melikhov 2107.07247]

$$
\bar{B}(p) \rightarrow \gamma^{(*)}(q)\left[\rightarrow \ell^{\prime+} \ell^{\prime-}\right] \ell^{-}\left(k_{1}\right) \bar{\nu}\left(k_{2}\right) \quad \ell \neq \ell^{\prime}
$$

- soft contributions are expected to increase due to resonant enhancement at $q^{2}>0$
- however: apparent suppression of soft contributions at $q^{2}<0$ or $k^{2}<0$
- not an "unphysical process"
- form factors at $q^{2}<0$ describe $\ell^{\prime-} \bar{B} \rightarrow \ell^{\prime-} \ell^{-} \bar{\nu}$ scattering
- collect FF data (experimental, lattice) at $q^{2}, k^{2} \geq 0$
- derive dispersion relations to extrapolate FFs to a fixed value of $q_{0}^{2}<0$ and/or $k_{0}^{2}<0$ 1st part
- compare extrapolated results with collinear factorization predictions to extract information on B-meson LCDAs

Dispersion Relations for $B \rightarrow \gamma^{*}$
Form Factors

1. project hadronic Lorentz tensor onto a basis of 4 scalar-valued hadronic form factors $F_{i}\left(q^{2}, k^{2}\right)$
2. determine dispersion relations that describe evolution of the F_{i} in both q^{2} (weak momentum transfer) and k^{2} (e.m. momentum transfer)

Requirements: choice of basis must be free of "artificial" singularities (i.e., of kinematic origin)

- some suspicious results in the literature
- collinear factorization results known for 3 out of 4 FFs
using currents $J_{\text {had }}^{\mu}=\bar{u} \gamma^{\mu}\left(1-\gamma_{5}\right) b$ and $J_{\text {lep }}^{\mu}=\bar{\ell} \gamma^{\mu}\left(1-\gamma_{5}\right) \nu$, define

$$
\begin{aligned}
Q_{B} T_{\text {had }}^{\mu \nu} & =\int d x \exp ^{\text {iqx }}\langle 0| T\left\{J_{\text {e.m. }}^{\mu}(x) J_{\text {had }}^{\nu}(0)\right\}\left|B^{-}\right\rangle \\
\left\langle\ell^{-} \bar{\nu}_{\ell} \gamma^{*}\right| J_{\text {lep }, \nu}(0) J_{\text {had }}^{\nu}(0)\left|B^{-}\right\rangle & =e Q_{B} \varepsilon_{\mu}^{*}\left[T_{\text {had }}^{\mu \nu}+T_{\text {FSR }}^{\mu \nu}\right]\left[\bar{u} \gamma_{\nu}\left(1-\gamma_{5}\right) v\right]
\end{aligned}
$$

- only sum of tensors fulfil Ward identity

$$
q_{\mu}\left[T_{\text {had }}^{\mu \nu}+T_{\text {FSR }}^{\mu \nu}\right]=0=q_{\mu}\left[T_{\text {had.h. }}^{\mu \nu}+T_{\text {had.inh. }}^{\mu \nu}+T_{\text {FSR }}^{\mu \nu}\right]=q_{\mu}\left[T_{\text {had,.h. }}^{\mu \nu}\right]
$$

- $T_{\text {FSR }}$ is known, $T_{\text {had }}$ is described in terms of $\bar{B} \rightarrow \gamma^{*}$ form factors
- split hadronic tensor in homogeneous and inhomogeneous parts
- inhomogeneous part chosen such that $T_{\text {had,inh. }}+T_{\text {FSR }}$ fulfils Ward identity in sum
- homogeneous part $T_{\text {had,h. }}$ fulfils Ward identity on its own
issues:
- Ward identity fixes $T_{\text {had, inh. }}$ only incompletely
- finding: different choices of $T_{\text {had.inh. }}$ can induce kinematic singularities in homogeneous part despite restoring the Ward identity!
issues:
- Ward identity fixes $T_{\text {had, inh. }}$ only incompletely
- finding: different choices of $T_{\text {had.inh. }}$ can induce kinematic singularities in homogeneous part despite restoring the Ward identity!
- for purely electromagnetic form factors, Bardeen-Tung-Tarrach (BTT) procedure yields FF basis w/o kinematic singularities
- not applicable: $B^{-} \rightarrow \gamma^{*}$ FFs describe both e.m. and weak currents
our approach

1. clarify parametrization of $T_{\text {had,inh.; }}$ check against explicit Chiral Perturbation Theory results for $K \rightarrow \gamma^{*} \ell^{-} \bar{\nu}$ FFs
2. adapt BTT procedure for use in combined e.m.- and weak-current induced FFs \rightarrow describe $T_{\text {had,h. }}$ in terms of FFs free of kinematic singularities
3. Ward identity is satisfied for inhomogeneities of form:

$$
T_{\text {had, inhom }}^{\mu \nu}=-f_{B}\left[a g^{\mu \nu}+b \frac{k^{\mu} k^{\nu}}{k \cdot q}+c \frac{k^{\mu} q^{\nu}}{k \cdot q}+(1-b) \frac{q^{\mu} k^{\nu}}{q^{2}}+(1-a-c) \frac{q^{\mu} q^{\nu}}{q^{2}}\right]
$$

2. in the literature

Label	a	b	c	$T_{\text {H, inhom. }}^{\mu \nu}(k, q)$
\mathcal{A}	1	$\frac{2(k \cdot q)}{2(k \cdot q)+q^{2}}$	0	$-f_{B}\left[g^{\mu \nu}+\frac{\left(2 k^{\mu}+q^{\prime}\right) k^{\nu}}{2(k \cdot q)+q^{2}}\right]$
\mathcal{B}	0	$\frac{k \cdot q}{k \cdot q+q^{2}}$	$\frac{k \cdot q}{k \cdot q \cdot q q^{2}}$	$-f_{B} \frac{(k+q)^{\mu}(k+q)^{\nu}}{k \cdot q \cdot q+q^{2}}$
\mathcal{C}	0	1	1	$-f_{B} \frac{k^{\mu}(k+q)^{\nu}}{k}$
\mathcal{D}	0	0	0	$-f_{B} \frac{q^{\mu}(k+q)^{\nu}}{q^{2}}$

3. difference between any of these choices is homogeneous but shuffles singularities from inhomogeneous part into homogeneous part or vice versa
4. we identify only one choice (\mathcal{A}) which leads to $1 /\left[k^{2}-M_{B}^{2}\right]$ pole only in the pseudoscalar form factor compatible with ChPT results in $K \rightarrow \gamma^{*}$ form factors
5. the analogue to the QED Ward identity for the weak current reads

$$
k_{\nu} T_{\text {had,hom }}^{\mu \nu}=T_{\text {had,P.hom }}^{\mu}
$$

- $T_{\text {had, }, \mathrm{P}}$ is obtained from $T_{\text {had }}$ by replacing $J_{\text {had }} \rightarrow J_{\text {had, }, \mathrm{P}}=\left(m_{b}+m_{u}\right)\left[\bar{u} \gamma_{5} b\right]$
- ditto for the homogeneous parts

2. split the homogeneous tensor into two parts:

$$
T_{\text {had, hom }}^{\mu \nu}=\tilde{T}_{\text {had, hom }}^{\mu \nu}+\frac{k^{\nu}}{k^{2}} T_{\text {had, P,hom }}^{\mu} \quad k_{\nu} \tilde{T}_{\text {had,hom }}^{\mu \nu}=0
$$

3. apply the regular BTT procedure to $\tilde{T}_{\text {had,hom }}^{\mu \nu}$ and $T_{\text {had,P,hom }}^{\mu}$

$$
\begin{aligned}
T_{\text {had,hom. }}^{\mu \nu}= & \frac{1}{M_{B}}\left[(k \cdot q) g^{\mu \nu}-k^{\mu} q^{\nu}\right] F_{1}+\frac{1}{M_{B}}\left[\frac{q^{2}}{k^{2}} k^{\mu} k^{\nu}-\frac{k \cdot q}{k^{2}} q^{\mu} k^{\nu}+q^{\mu} q^{\nu}-q^{2} g^{\mu \nu}\right] F_{2} \\
& +\frac{1}{M_{B}}\left[\frac{k \cdot q}{k^{2}} q^{\mu} k^{\nu}-\frac{q^{2}}{k^{2}} k^{\mu} k^{\nu}\right] F_{3}+\frac{i}{M_{B}} \varepsilon^{\mu \nu \rho \sigma} k_{\rho} q_{\sigma} F_{4}
\end{aligned}
$$

well-defined spin/parity quantum numbers:

- F_{1}, F_{2} : axialvector form factors; k^{2} poles are $J^{P}=1^{+}$, e.g., the B_{1}
- F_{3} : pseudoscalar form factor; k^{2} poles are $J^{P}=0^{-}$, e.g., the B
- F_{4} : vector form factor; k^{2} poles are $J^{P}=1^{-}$, e.g., the B^{*}
- diagonalizes the rate in the limit $m_{\ell} \rightarrow 0$, i.e., $d \Gamma / d q 2 \not \supset F_{i} F_{j}^{*}+F_{i}^{*} F_{j}$ (except for FSR terms)

Systematic Parametrization of
$\phi_{+}(\omega)$

Definition

matrix element of light-cone operator in HQET normalized to the matrix element of the corresponding local operator

$$
\tilde{\phi}_{+}(\tau ; \mu)=\frac{\langle 0| \bar{q}(\tau n)[\tau n, 0] \pitchfork \gamma_{5} h_{v}(0)|B(v)\rangle}{\langle 0| \bar{q}(0) \pitchfork \gamma_{5} h_{v}(0)|B(v)\rangle} .
$$

with $n^{2}=0$

Fourier transform commonly used:

$$
\phi_{+}(\omega)=\int_{-\infty}^{+\infty} \frac{d \tau}{2 \pi} \tilde{\phi}_{+}(\tau)
$$

- ϕ_{+}is modelled, typically as an exponential ansatz
- ϕ_{+}develops a non-exponential "radiative tail" under RG evolution
- some models account for this, chiefly the one from the same paper by Lee \& Neubert (pin the tail on an exponential model)
- further models inspired by π LCDA / experience in modelling $\gamma^{*} \rightarrow \pi \gamma$

P1 $\tilde{\phi}_{+}(\tau)$ is analytic in the half plane $\operatorname{Im} \tau<0$
P2 $\tilde{\phi}_{+}(\tau)$ is analytic on the real axis, except for a (log.) singular point at $\tau=0$.
$\Rightarrow \tilde{\phi}_{+}(\tau)$ is integrable on the real axis and

$$
\int_{-\infty}^{+\infty} d \tau \phi_{+}(\tau)=0
$$

P3 $\tilde{\phi}_{+}(\tau-i \varepsilon)$ converges toward $\tilde{\phi}_{+}(\tau)$ almost everwhere for $\tau \in \mathbb{R}$
P1 to P3 imply that the Fourier transform

$$
\phi_{+}(\omega)=\int_{-\infty}^{+\infty} \frac{d \tau}{2 \pi} \tilde{\phi}_{+}(\tau)
$$

exists and

$$
\int_{-\infty}^{+\infty} \frac{d \tau}{2 \pi}\left|\tilde{\phi}_{+}(\tau)\right|^{2}=\int_{0}^{\infty} d \omega\left|\phi_{+}(\omega)\right|^{2}<\infty
$$

define a "2-norm" for ϕ_{+}

$$
\chi \equiv \int_{-\infty}^{\infty} \frac{d \tau}{2 \pi}\left|\tilde{\phi}_{+}(\tau)\right|^{2}\left|1+i \omega_{0} \tau\right|^{2}
$$

which is finite but unknown
ω_{0} : intrinsic hadronic scale

- find parametrization for ϕ_{+}that diagonalizes χ, i.e.:

$$
\phi_{+}(\tau)=\frac{1}{\omega_{0}} \sum_{n} a_{n} f_{n}(\tau) \quad \text { so that } \quad \omega_{0} \chi \sim \sum_{n}\left|a_{n}\right|^{2}
$$

- if χ were known, then coefficients would be bounded: $-\sqrt{\chi}<a_{n}<\sqrt{\chi}$
- map lower halfplane in τ to interior of unit circle in y

$$
\tau \mapsto y(\tau)=\frac{i \omega_{0} \tau-1}{i \omega_{0} \tau+1}
$$

- account for weight $\left|1+i \omega_{0} \tau\right|^{2}$ in the norm and Jacobian of the map
- Taylor expand analytical remainder of ϕ_{+} around $y=0\left(\tau=-i / \omega_{0}\right)$

$$
\begin{aligned}
\phi_{+}(\tau) & =\frac{1}{\left(1+i \omega_{0} \tau\right)\left(1+i \omega_{0} \tau\right)} \sum_{n} a_{n} y^{n}(\tau) \\
\chi & =\frac{1}{2 \omega_{0}} \sum_{n}\left|a_{n}\right|^{2}
\end{aligned}
$$

- generalisation of an existing model
- replicate by keeping only the $n=0$ term
- even truncated parametrisation can replicate features of the radiative tail
- "[it] generalizes the Grozin-Neubert relations [...] to one-loop accuracy [...]"
- Lee-Neubert model is reasonably replicated with truncation at 3rd order
- "pathological" models can only be replicated with some difficulty
- example: free parton model
- several way to account for RG evolution with the parametrization
- preferred and numerically fastest: evolve coefficients a_{n}, evolution matrix is only dependent on scales and ω_{0}
- inverse moment

$$
L_{0}=\frac{1}{\lambda_{B}}=\int_{0}^{\infty} \frac{d \omega}{\omega} \phi_{+}(\omega)=\frac{1}{\omega_{0}} \sum_{n=0}^{\infty} \frac{a_{2 n}}{2 n+1}
$$

- collinear factorization result for $B^{-} \rightarrow \gamma$ form factors, available in EOS
- global fit to all available information on ϕ_{+}:
- $B \rightarrow \gamma^{(*)}$ FF from exp / Lattice QCD; short-distance expansion of $\phi_{+}(\tau)$
- adhoc assumption so far: value of $\chi \rightarrow$ Lattice QCD?
- right: preliminary plots from sensitvity study, using ficticious inputs in underconstrained fit

Conclusion

- theory work onging, need to get rid of soft contributions to increase sensitivity to ϕ_{+}in collinear factorization results for $B \rightarrow \gamma^{(*)}$
- one approach: extrapolate to spacelike momentum transfer q^{2} / k^{2}
- part 1: revisit dispersion relations to ensure that extrapolation works
- clarified some issues in the literature
- part 2: go beyond adhoc modelling of ϕ_{+}with systematic parametrisation
- Lattice QCD input on 2-norm of ϕ_{+}would be very helpful

