# Radiative leptonic decays with an energetic / virtual photon

M. Beneke (TU München)

Workshop on radiative leptonic B decays, Marseille, February 28 - March 1, 2024

MB, J. Rohrwild, 1110.3228
 MB, V.M. Braun, Y. Ji, Y.B. Wei, 1804.04962
 MB, C. Bobeth, Y-m. Wang, 2008.12494
 MB, Böer, Rigatos, Vos, 2102.10060





Three reasons to study  $B \to \gamma \ell \nu, \gamma \ell^+ \ell^-, \ell \bar{\nu}_\ell \ell^{(\prime)} \bar{\ell}^{(\prime)}$  (at large  $E_\gamma \gg \Lambda_{\text{QCD}}$ )

- Radiative electroweak FCNC decay  $B \to \gamma \ell^+ \ell^-$  less hadronic than  $K^{(*)} \ell^+ \ell^- \leftarrow$  unfortunately not true
- For a measurement of  $\lambda_B$  and the leading-twist *B*-meson LCDA. Appear in almost all exclusive *B* decays in LP in the heavy-quark expansion (spectator scattering)

$$iF_{\text{stat}}(\mu)\Phi_{B+}(\omega,\mu) = \frac{1}{2\pi} \int dt \, e^{it\omega} \, \langle 0|(\bar{q}_s Y_s)(tn_-)\not \!\!\!/ - \gamma_5(Y_s^{\dagger}h_v)(0)|\bar{B}_v\rangle_{\mu}$$
$$\frac{1}{\lambda_B(\mu)} = \int_0^\infty \frac{d\omega}{\omega} \, \Phi_{B+}(\omega,\mu),$$

• Factorization theory beyond LP

Three reasons to study  $B \to \gamma \ell \nu, \gamma \ell^+ \ell^-, \ell \bar{\nu}_\ell \ell^{(\prime)} \bar{\ell}^{(\prime)}$  (at large  $E_\gamma \gg \Lambda_{\text{QCD}}$ )

- Radiative electroweak FCNC decay  $B \to \gamma \ell^+ \ell^-$  less hadronic than  $K^{(*)} \ell^+ \ell^- \leftarrow$  unfortunately not true
- For a measurement of λ<sub>B</sub> and the leading-twist B-meson LCDA.
   Appear in almost all exclusive B decays in LP in the heavy-quark expansion (spectator scattering)

$$iF_{\text{stat}}(\mu)\Phi_{B+}(\omega,\mu) = \frac{1}{2\pi} \int dt \, e^{it\omega} \, \langle 0|(\bar{q}_s Y_s)(tn_-)\not\!\!/ - \gamma_5(Y_s^{\dagger}h_v)(0)|\bar{B}_v\rangle_{\mu}$$
$$\frac{1}{\lambda_B(\mu)} = \int_0^\infty \frac{d\omega}{\omega} \, \Phi_{B+}(\omega,\mu),$$

- Factorization theory beyond LP
- For their own ← this workshop

#### **Basic physics**

$$T^{\mu\nu} = \int \mathrm{d}^4 x \, e^{iqx} \langle 0| \mathrm{T}\{j^{\mu}_{\mathrm{em}}(x)(\overline{u}\gamma^{\nu}(1-\gamma_5)b)(0)\}|B^-\rangle$$



 (a) Short-distance x ~ 1/m<sub>b</sub> heavy quark-W\* vertex Light-cone expansion of j<sub>em</sub>(x)j<sub>weak</sub>(0), x<sup>2</sup> ~ 1/(m<sub>b</sub>Λ) ≪ 1/Λ<sup>2</sup> Even when q<sup>2</sup> = 0, as long as n+q ~ m<sub>b</sub> (or ≫ Λ) [n+q = 2E<sub>γ</sub> for q<sup>2</sup> = 0].

(b), (c) Always, short-distance,  $f_B$ 

M. Beneke (TU München),  $B \to \gamma \ell \nu, \gamma \ell^+ \ell^-, \ell \bar{\nu}_{\ell} \ell^{(\prime)} \bar{\ell}^{(\prime)}$ 

Marseille, February 29, 2024 3/16

#### **Basic physics**

$$T^{\mu\nu} = \int \mathrm{d}^4 x \, e^{iqx} \langle 0| \mathrm{T}\{j^{\mu}_{\mathrm{em}}(x)(\overline{u}\gamma^{\nu}(1-\gamma_5)b)(0)\}|B^-\rangle$$



- (a) Short-distance x ~ 1/m<sub>b</sub> heavy quark-W\* vertex Light-cone expansion of j<sub>em</sub>(x)j<sub>weak</sub>(0), x<sup>2</sup> ~ 1/(m<sub>b</sub>Λ) ≪ 1/Λ<sup>2</sup> Even when q<sup>2</sup> = 0, as long as n+q ~ m<sub>b</sub> (or ≫ Λ) [n+q = 2E<sub>γ</sub> for q<sup>2</sup> = 0].
- (b), (c) Always, short-distance,  $f_B$



M. Beneke (TU München),  $B \to \gamma \ell \nu, \gamma \ell^+ \ell^-, \ell \bar{\nu}_\ell \ell^{(\prime)} \bar{\ell}^{(\prime)}$ 

Marseille, February 29, 2024 3/16

## **Basic physics**

radiative-semileptonic  $(\gamma \ell \nu)$ 

four-lepton  $(\ell \nu \ell^{(\prime)} \ell^{(\prime)})$ 

radiative-electroweak FCNC ( $\gamma \ell \ell$ )

double-radiative  $(\gamma \gamma)$ 

- LP √
- main issue are soft power corrections
- time-like photon virtuality  $\rightarrow$  resonances
- longitudinal form factor
- local and global parton-hadron duality violation
- when real photon from FCNC weak current, time-like virtual photon → resonances .... [as above]
- four-quark operators, charmonium resonances
- CP asymmetries (very small for *B<sub>s</sub>*)
- as above, without resonances

M. Beneke (TU München),  $B \to \gamma \ell \nu, \gamma \ell^+ \ell^-, \ell \bar{\nu}_\ell \ell^{(\prime)} \bar{\ell}^{(\prime)}$ 

Marseille, February 29, 2024 4/16

 $\rightarrow \ell \bar{\nu}_{\ell} \ell^{(\prime)} \bar{\ell}^{(\prime)}$  $B^{-}$ 

#### 2102.10060, with P. Böer, P. Rigatos and K.K.Vos

Other work employing factorization methods: Bharucha, Kindra, Mahajan 2102.03193; Wang, Wang, Wei 2111.11811 Resonance / hadronic models and dispersion relations: Danilina, Nikitin, 2017 + 2309.11164; Danilina, Nikitin, Toms, 1911.03670; Ivanov, Melikhov, 2107.07247, 2204.2792; Kürten, Zanke, Kubis, van Dyk, 2210.09832

M. Beneke (TU München),  $B \to \gamma \ell \nu, \gamma \ell^+ \ell^-, \ell \bar{\nu}_\ell \ell^{(\prime)} \bar{\ell}^{(\prime)}$ 

Marseille, February 29, 2024 5/16

#### Form factor decomposition



 $T^{\mu\nu} = F_1 g^{\mu\nu} + F_2 \epsilon^{\mu\nu\alpha\beta} k_\alpha q_\beta + F_3 k^\mu q^\nu + F_4 q^\mu k^\nu + F_5 k^\mu k^\nu + F_6 q^\mu q^\nu \qquad F_i = F_i(k^2, q^2)$   $6 \rightarrow 4 \quad [Ward identity] \quad \rightarrow 3 \quad [massless lepton limit]$   $= (g^{\mu\nu} v \cdot q - v^\mu q^\nu) \hat{F}_{A_\perp} + i \epsilon^{\mu\nu\alpha\beta} v_\alpha q_\beta F_V - \hat{F}_{A_\perp} v^\mu q^\nu + (q^\mu, k^\nu) \text{ terms}$ 

 $= (g \quad v \cdot q - v \cdot q) r_{A_{\perp}} + i e \qquad v_{\alpha} q_{\beta} r_{V} - r_{A_{\parallel}} v \cdot q \quad + (q \quad ; \kappa \quad) \text{ terms}$ 

Include final-state emission in  $F_{A_{\perp}}$ ,  $F_{A_{\parallel}}$ . Redefine  $F_{A_{\parallel}}$  to correspond to longitudinally polarized virtual photon and *vanishes as*  $\mathcal{O}(q^2)$  *as*  $q^2 \to 0$ 

For non-identical lepton flavours

$$\begin{aligned} \frac{d^2 \mathrm{Br} \left( B^- \to \ell \, \bar{\nu}_{\ell} \, \ell' \bar{\ell}' \right)}{dq^2 \, dk^2} &= \frac{\tau_B G_F^2 |V_{ub}|^2 \alpha_{\mathrm{em}}^2}{2^8 3^2 \pi^3 m_B^5} \frac{\sqrt{\lambda}}{q^2} \sqrt{1 - \frac{4m_{\ell'}^2}{q^2}} \left( 1 - \frac{m_{\ell}^2}{k^2} \right) \\ &\times \left( 8k^2 \left( m_B^2 + q^2 - k^2 \right)^2 \left| F_{A_\perp} \right|^2 + 8k^2 \lambda \left| F_V \right|^2 + \frac{\lambda^2}{q^2} \left| F_{A_\parallel} \right|^2 \right) \end{aligned}$$

Keep lepton mass in phase-space.

M. Beneke (TU München), 
$$B \to \gamma \ell \nu, \gamma \ell^+ \ell^-, \ell \bar{\nu}_\ell \ell^{(\prime)} \bar{\ell}^{(\prime)}$$
 Marseille, February 29, 2024 6/16

Factorization

QCD  $\xrightarrow{\text{remove h}}$  SCET<sub>I</sub>  $\xrightarrow{\text{remove hc}}$  SCET<sub>II</sub> Accuracy:  $\mathcal{O}(\alpha_s)$  at LP,  $\mathcal{O}(\alpha_s^0)$  at NLP  $\Lambda/n_+q$  Factorization

QCD  $\xrightarrow{\text{remove h}}$  SCET<sub>I</sub>  $\xrightarrow{\text{remove hc}}$  SCET<sub>II</sub> Accuracy:  $\mathcal{O}(\alpha_s)$  at LP,  $\mathcal{O}(\alpha_s^0)$  at NLP  $\Lambda/n_+q$ 

Leading power (rigorous, all orders)

$$T^{\mu\nu}(p,q) = 2 C_V^{(A0)} \int d^4x \, e^{iqx} \langle 0|T \left\{ j^{\mu}_{q,\text{SCET}_{\text{I}}}(x), [\bar{q}_{\text{hc}} \gamma^{\nu}_{\perp} P_L h_{\nu}](0) \right\} |B^-_{\nu} \rangle$$

Only  $F_L = (F_V + F_{A_{\perp}})/2 \neq 0$  at LP due to helicity conservation for  $n_+q \gg \Lambda$ .  $F_R^{\text{LP}} = F_{A_{\parallel}}^{\text{LP}} = 0.$ 

$$F_L^{\text{LP}} = \frac{C_V^{(A0)}(\mu)}{n_+ q} \frac{Q_u F_B(\mu) m_B}{n_+ q} \int_0^\infty d\omega \underbrace{\phi_+^B(\omega;\mu)}_{\text{B-LCDA}} \times \underbrace{\frac{J(n_+ q, q^2, \omega;\mu)}{\omega - n_- q - i0^+}}_{\text{Generates rescattering phase}} \qquad [n_- q = q^2/n_+ q]$$

Complex  $q^2$ -dependent inverse moment of the B-LCDA:

$$\frac{1}{\lambda_B^+(n_-q)} \equiv \int_0^\infty d\omega \; \frac{\phi_+^B(\omega)}{\omega - n_-q - i0^+}$$

M. Beneke (TU München),  $B \to \gamma \ell \nu, \gamma \ell^+ \ell^-, \ell \bar{\nu}_\ell \ell^{(\prime)} \bar{\ell}^{(\prime)}$ 

Marseille, February 29, 2024 7/16

Beyond leading power (murky, follows 2008.12494,  $B \rightarrow \gamma \ell \bar{\ell}$ )

$$\begin{split} F_L^{\rm NLP} &= \underbrace{\xi(q^2, v \cdot q)}_{\text{set to } - r_{\rm LP} \times F_L^{\rm LP}} + \frac{Q\ell f_B}{2v \cdot q} \,, \\ &= \underbrace{F_B \, \frac{R_B}{n+q} \frac{m_B Q_u}{n+q} \left(1 + \frac{n-q}{\lambda_B^+(n-q)}\right) - \frac{F_B m_B Q_b}{q^2 - 2m_b v \cdot q} - \frac{Q_\ell f_B}{2v \cdot q}}_{R_+} \\ \tilde{F}_{A\parallel}^{\rm NLP} &= \frac{4F_B m_B Q_u}{n+q} \frac{n-q}{n+q} \left(\frac{1}{\lambda_B^+(n-q)} - \frac{1}{\lambda_B^-(n-q)}\right) - \frac{2F_B Q_u}{n+q} \left(1 + \frac{n-q}{\lambda_B^+(n-q)}\right) \\ &+ \frac{2F_B m_b Q_b}{2v \cdot qm_b - q^2} - \frac{2f_B Q_\ell}{2v \cdot q} + \underbrace{\xi'(q^2, v \cdot q)}_{\text{set to 0}} \,, \end{split}$$

Resonances in the  $q^2 \sim \Lambda^2$  region are technically  $(\Lambda/n_+q)^2$  and can be added without double counting. They dominate any  $q^2$ -bin which contains them due to global *parton-hadron duality violation*.

$$F_{L(R)}^{\text{res}} = \sum_{V=\rho^0, \omega} c_V \frac{f_V m_V}{m_V^2 - q^2 - im_V \Gamma_V} \frac{1}{2} \left( \frac{2m_B}{m_B + m_V} V^{B \to V}(k^2) \pm \frac{m_B + m_V}{v \cdot q} A_1^{B \to V}(k^2) \right)$$

$$F_{A_{||}}^{\text{res}} \to 0 \qquad \text{[should be improved]}$$

M. Beneke (TU München),  $B \to \gamma \ell \nu, \gamma \ell^+ \ell^-, \ell \bar{\nu}_\ell \ell^{(\prime)} \bar{\ell}^{(\prime)}$ 

Marseille, February 29, 2024 8/16

## Di-lepton invariant mass spectrum



Left: Contribution to the  $q^2$  distribution from separate FFs,  $n_+q = 4$  GeV.

• Longitudinal polarization dominates except at very small q<sup>2</sup>

$$\frac{d^2 \mathrm{Br}^{(F_A_{\parallel})}}{dq^2 \, dk^2} \left/ \frac{d^2 \mathrm{Br}^{(F_L)}}{dq^2 \, dk^2} \; q^2 \stackrel{\approx}{\to} 0 \; \frac{27\pi^2 q^2}{4m_B^2} \right.$$

•  $\pi^2$  from rescattering phase!

## Di-lepton invariant mass spectrum



Left: Contribution to the  $q^2$  distribution from separate FFs,  $n_+q = 4$  GeV.

Bottom: Dependence of  $F_L$  on  $\lambda_B$  at  $n_+q = 4$  GeV.

• Longitudinal polarization dominates except at very small *q*<sup>2</sup>

$$\frac{d^2 \mathbf{Br}^{(F_A \parallel )}}{dq^2 dk^2} \middle/ \frac{d^2 \mathbf{Br}^{(F_L)}}{dq^2 dk^2} q^2 \xrightarrow{\approx} 0 \frac{27\pi^2 q^2}{4m_B^2}$$

•  $\pi^2$  from rescattering phase!



#### Binned branching fractions (non-identical leptons)

| Decay                        | $q^2$ bin            | LP    |       | NLP   |        | Total | Uncertainty        |                    |                    |                    |
|------------------------------|----------------------|-------|-------|-------|--------|-------|--------------------|--------------------|--------------------|--------------------|
|                              | $[\text{GeV}^2]$     | LO    | NLO   | loc   | $+\xi$ | +res  | $\mu_{h,hc}$       | $r_{ m LP}$        | $\lambda_B$        | tot                |
| $\mu^-\mu^+ e^- \bar{\nu}_e$ | $[4m_{\mu}^2, 0.96]$ | 0.58  | 0.51  | 0.70  | 0.48   | 1.57  | $^{+0.02}_{-0.02}$ | $^{+0.35}_{-0.29}$ | $^{+1.33}_{-0.40}$ | $^{+1.37}_{-0.49}$ |
|                              | $[4m_{\mu}^2, 6]$    | 0.76  | 0.66  | 0.98  | 0.67   | 1.78  | $^{+0.02}_{-0.02}$ | $^{+0.43}_{-0.35}$ | $^{+1.46}_{-0.47}$ | $^{+1.52}_{-0.58}$ |
|                              | [1, 6]               | 0.18  | 0.14  | 0.26  | 0.18   | 0.20  | $^{+0.00}_{-0.00}$ | $^{+0.08}_{-0.06}$ | $^{+0.11}_{-0.06}$ | $^{+0.14}_{-0.08}$ |
|                              | [1.5, 6]             | 0.10  | 0.08  | 0.15  | 0.10   | 0.11  | $^{+0.00}_{-0.00}$ | $+0.05 \\ -0.04$   | +0.03<br>-0.03     | $+0.06 \\ -0.05$   |
|                              | [2, 6]               | 0.062 | 0.042 | 0.090 | 0.062  | 0.068 | $+0.001 \\ -0.001$ | +0.030<br>-0.022   | $+0.002 \\ -0.012$ | +0.030<br>-0.025   |
| $e^-e^+\mu^-\bar{\nu}_\mu$   | $[q_{\min}^2, 0.96]$ | 1.23  | 1.04  | 1.23  | 0.81   | 2.28  | $^{+0.03}_{-0.04}$ | $^{+0.66}_{-0.53}$ | $^{+2.40}_{-0.67}$ | $^{+2.49}_{-0.86}$ |
|                              | [1, 6]               | 0.18  | 0.14  | 0.26  | 0.18   | 0.20  | $^{+0.00}_{-0.00}$ | $^{+0.08}_{-0.06}$ | $^{+0.11}_{-0.06}$ | $^{+0.14}_{-0.08}$ |

• BR in units of  $10^{-8}$ . Cut  $n_+q > 3$  GeV requires measurement of  $k^2$ .

- NLP is sizable.
- Rate drops by factor 10 20 when bin exlcudes the resonance region.
- Difference between electrons and muons in total rate from phase-space.
- Sensitivity to B-LCDA decreases with  $q_{\min}^2$  of bin.

#### Binned branching fractions (identical leptons)

| Decay                          | $q_{\rm low}^2$ bin  | LP   |      | NLP  |        | Total       | Uncertainty        |                    |                    |                      |
|--------------------------------|----------------------|------|------|------|--------|-------------|--------------------|--------------------|--------------------|----------------------|
|                                | $[GeV^2]$            | LO   | NLO  | loc  | $+\xi$ | +res        | $\mu_{h,hc}$       | $r_{\rm LP}$       | $\lambda_B$        | $\operatorname{tot}$ |
| $\mu^-\mu^+\mu^-\bar{\nu}_\mu$ | $[4m_{\mu}^2, 0.96]$ | 0.58 | 0.51 | 0.71 | 0.49   | 1.54 (1.77) | $+0.02 \\ -0.02$   | $^{+0.35}_{-0.29}$ | $^{+1.29}_{-0.39}$ | $^{+1.34}_{-0.48}$   |
|                                | $[4m_{\mu}^2, 6]$    | 0.74 | 0.64 | 0.97 | 0.67   | 1.75 (2.00) | $+0.02 \\ -0.02$   | $^{+0.42}_{-0.34}$ | $^{+1.40}_{-0.45}$ | $^{+1.46}_{-0.56}$   |
|                                | [1, 6]               | 0.15 | 0.11 | 0.25 | 0.17   | 0.19 (0.21) | $^{+0.00}_{-0.00}$ | $^{+0.07}_{-0.05}$ | $^{+0.10}_{-0.05}$ | $^{+0.12}_{-0.06}$   |
|                                | [1.5, 6]             | 0.08 | 0.06 | 0.14 | 0.10   | 0.11 (0.11) | $^{+0.01}_{-0.01}$ | $^{+0.04}_{-0.03}$ | $^{+0.03}_{-0.02}$ | $^{+0.05}_{-0.04}$   |
|                                | [2, 6]               | 0.04 | 0.03 | 0.08 | 0.06   | 0.06 (0.07) | $^{+0.00}_{-0.00}$ | $-0.02 \\ -0.02$   | $^{+0.00}_{-0.01}$ | $^{+0.03}_{-0.02}$   |
| $e^-e^+e^-\bar{\nu}_e$         | $[q_{\min}^2, 0.96]$ | 1.22 | 1.03 | 1.23 | 0.80   | 2.23 (2.57) | $^{+0.04}_{-0.06}$ | $^{+0.65}_{-0.53}$ | $^{+2.33}_{-0.65}$ | $^{+2.42}_{-0.82}$   |
|                                | [1, 6]               | 0.15 | 0.12 | 0.25 | 0.18   | 0.20 (0.22) | $^{+0.00}_{-0.00}$ | $^{+0.07}_{-0.05}$ | $^{+0.10}_{-0.05}$ | $^{+0.12}_{-0.07}$   |

- BR in units of 10<sup>-8</sup>.
- Identify the invariant masses of the two  $\ell^- \ell^+$  pairings as  $q_{low}^2 < q_{high}^2$ . Require  $n_+ q_{low} > 3$  GeV and  $n_+ q_{high} > 3$  GeV for both by measuring  $k_{low}^2$  and  $k_{high}^2$ , respectively.  $(k_{low}^2$  is not necessarily lower than  $k_{high}^2$ .
- · Can only be implemented numerically on the theory calculation:

$$Br\left(B^{-} \to \ell \,\bar{\nu}_{\ell} \,\ell\bar{\ell}\right) = Br\left(B^{-} \to \ell \,\bar{\nu}_{\ell} \,\ell'\bar{\ell}'\right) \\ + Br_{int}\left(B^{-} \to \ell \,\bar{\nu}_{\ell} \,\ell\bar{\ell}\right)$$



• Numerically the interference term is at most a few percent.

## Sensitivity to $\lambda_B$ and the B-LCDA



Small- $q^2$  bin has similar sensitivity as  $B^- \to \gamma \ell \bar{\nu}_{\ell}$ , but depends on resonance contribution. Higher  $q^2$  retains some sensitivity, gradually decreasing.

M. Beneke (TU München), 
$$B \to \gamma \ell \nu, \gamma \ell^+ \ell^-, \ell \bar{\nu}_{\ell} \ell^{(\prime)} \bar{\ell}^{(\prime)}$$

Marseille, February 29, 2024 12/16

 $B_s 
ightarrow \mu^+ \mu^- \gamma$ 

2008.12494, with C. Bobeth and Y. Wang

Basic features of  $B_s \to \mu^+ \mu^- \gamma$ 

- Require an energetic photon,  $E_{\gamma} > 1.5 \,\text{GeV} \sim m_B/2$ •
- Very rare, branching fraction  $10^{-10} 10^{-8}$  depending on the  $q^2 = m_{\mu^+\mu^-}^2$  bin. • Not yet observed.



- Theoretically shares features with  $B \to \ell \nu \gamma$  ( $\to$  B-LCDA at LP) and  $B \to K^{(*)}\ell\ell$ (charmonium resonances, stay below  $q^2 = 6 \,\text{GeV}^2$ )
- Standard SCET calculation, except for light-meson resonances in the B-type contribution. Accuracy:  $\mathcal{O}(\alpha_s)$  at LP,  $\mathcal{O}(\alpha_s^0)$  at NLP  $\Lambda/E_{\gamma}$

## Structure of the theoretical result

#### LP amplitude

$$\begin{split} \overline{\mathcal{A}}_{\text{type}-A} &= ie \; \frac{\alpha_{\text{em}}}{4\pi} \; \mathcal{N}_{\text{ew}} \; \epsilon_{\mu}^{\star} \left\{ \left( V_{9}^{\text{eff}}(q^{2}) + \frac{2 \, \overline{m}_{b} \, m_{Bq}}{q^{2}} \, V_{7}^{\text{eff}}(q^{2}) \right) L_{V,\nu} + V_{10}^{\text{eff}}(q^{2}) L_{A,\nu} \right\} \; \mathcal{T}^{\mu\nu}(k) \\ \overline{\mathcal{A}}_{\text{type}-B} &= ie \; \frac{\alpha_{\text{em}}}{4\pi} \; \mathcal{N}_{\text{ew}} \; \epsilon_{\mu}^{\star} \; \frac{4 \, \overline{m}_{b} E_{\gamma}}{q^{2}} \; V_{7}^{\text{eff}}(k^{2} = 0) L_{V,\nu} \; \mathcal{T}^{\mu\nu}(q) \\ & V_{7}^{\text{eff}}(q^{2}) \; = \; C_{7}^{\text{eff}} \; C_{T_{1}}^{(A0)}(q^{2}) + \dots \\ & V_{9}^{\text{eff}}(q^{2}) \; = \; C_{9}^{\text{eff}}(q^{2}) \; C_{V}^{(A0)}(q^{2}) + \dots \\ & V_{10}^{\text{eff}}(q^{2}) \; = \; C_{10} \; C_{V}^{(A0)}(q^{2}) + \dots \\ \end{split}$$

 $\mathcal{T}^{\mu\nu}(r) = \text{SCET}_{I}$  correlation function of electromagnetic and flavour-changing current [same as for  $B \to X_s \ell \ell$ ]

#### Structure of the theoretical result

#### LP amplitude

$$\begin{aligned} \overline{\mathcal{A}}_{\text{type}-A} &= ie \; \frac{\alpha_{\text{em}}}{4\pi} \; \mathcal{N}_{\text{ew}} \; \epsilon_{\mu}^{\star} \left\{ \left( V_{9}^{\text{eff}}(q^{2}) + \frac{2 \, \overline{m}_{b} \, m_{Bq}}{q^{2}} \, V_{7}^{\text{eff}}(q^{2}) \right) L_{V,\nu} + V_{10}^{\text{eff}}(q^{2}) L_{A,\nu} \right\} \; \mathcal{T}^{\mu\nu}(k) \\ \overline{\mathcal{A}}_{\text{type}-B} &= ie \; \frac{\alpha_{\text{em}}}{4\pi} \; \mathcal{N}_{\text{ew}} \; \epsilon_{\mu}^{\star} \; \frac{4 \, \overline{m}_{b} E_{\gamma}}{q^{2}} \; V_{7}^{\text{eff}}(k^{2} = 0) L_{V,\nu} \; \mathcal{T}^{\mu\nu}(q) \\ & V_{7}^{\text{eff}}(q^{2}) \; = \; C_{7}^{\text{eff}} \; C_{T_{1}}^{(A0)}(q^{2}) + \dots \\ & V_{9}^{\text{eff}}(q^{2}) \; = \; C_{9}^{\text{eff}}(q^{2}) \; C_{V}^{(A0)}(q^{2}) + \dots \\ & V_{10}^{\text{eff}}(q^{2}) \; = \; C_{10} \; C_{V}^{(A0)}(q^{2}) + \dots \\ & V_{10}^{\text{eff}}(q^{2}) \; = \; C_{10} \; C_{V}^{(A0)}(q^{2}) + \dots \end{aligned}$$

 $\mathcal{T}^{\mu\nu}(r) = \text{SCET}_{\text{I}}$  correlation function of electromagnetic and flavour-changing current [same as for  $B \to X_s \ell \ell$ ]

Resonance amplitude [Do no show other NLP contributions]

$$\overline{\mathcal{A}}_{\text{res}} = -ie \, \frac{\alpha_{\text{em}}}{4\pi} \, \mathcal{N}_{\text{ew}} \, \epsilon_{\mu}^{\star} \, (g_{\perp}^{\mu\nu} + i\varepsilon_{\perp}^{\mu\nu}) \, \frac{m_{Bq}}{2} \, \frac{4\overline{m}_{b}E_{\gamma}}{q^2} \, V_{7}^{\text{eff}}(0) L_{V,\nu} \, \frac{c_{Vf} v_{W} T_{1}^{Bq \to V}(0)}{m_{V}^2 - im_{V} \Gamma_{V} - q^2}$$

Corresponds to  $B_s \to V[\to \mu^+ \mu^-]\gamma$ Resonances  $\phi(1020), \phi(1680), \phi(2170)$  with widths 4.249(12), 150(50), 104(20) MeV

M. Beneke (TU München),  $B \to \gamma \ell \nu, \gamma \ell^+ \ell^-, \ell \bar{\nu}_\ell \ell^{(\prime)} \bar{\ell}^{(\prime)}$ 

Marseille, February 29, 2024 14/16

#### Global duality violation and form factors

• The resonance contribution to the differential branching fraction is formally  $\mathcal{O}(\Lambda^2_{\rm QCD}/m_b^2)$  but dominates any  $q^2$  bin, in which it is contained, if its width is small [MB, Buchalla, Neubert, Sachrajda, 2009]

$$R \equiv \int_{q_{\min}^2}^{q_{\max}^2} dq^2 \frac{d\Gamma_{\rm res}}{dq^2} \left/ \int_{q_{\min}^2}^{q_{\max}^2} dq^2 \frac{d\Gamma_{\rm LP}^{\rm type-B}}{dq^2} \approx 4\pi \left( \frac{c_V \lambda_{Bq} T_1^{Bq \to V}(0)}{Q_q F_{Bq}} \right)^2 \times \frac{f_V^2}{m_V \Gamma_V} \times \frac{1}{\ln \frac{q_{\max}^2}{q_{\min}^2}} \approx 57 \quad \text{for } \phi(1020)$$

#### Global duality violation and form factors

• The resonance contribution to the differential branching fraction is formally  $\mathcal{O}(\Lambda^2_{\rm QCD}/m_b^2)$  but dominates any  $q^2$  bin, in which it is contained, if its width is small [MB, Buchalla, Neubert, Sachrajda, 2009]

$$R \equiv \int_{q_{\min}^2}^{q_{\max}^2} dq^2 \frac{d\Gamma_{\rm res}}{dq^2} \left/ \int_{q_{\min}^2}^{q_{\max}^2} dq^2 \frac{d\Gamma_{\rm LP}^{\rm type-B}}{dq^2} \approx 4\pi \left( \frac{c_V \lambda_{B_q} T_1^{B_q \to V}(0)}{\mathcal{Q}_q F_{B_q}} \right)^2 \times \frac{f_V^2}{m_V \Gamma_V} \times \frac{1}{\ln \frac{q_{\max}^2}{q_{\min}^2}} \approx 57 \quad \text{for } \phi(1020)$$

• Left-handed photon vectorial amplitude:



Zero of real part implies forward-backward asymmetry  $\propto \cos \theta_{\ell}$ , but its observation requires B tagging  $\rightarrow$  not observable at LHCb.

M. Beneke (TU München),  $B \to \gamma \ell \nu, \gamma \ell^+ \ell^-, \ell \bar{\nu}_\ell \ell^{(\prime)} \bar{\ell}^{(\prime)}$ 

# Rate predictions for $B_s \rightarrow \gamma \mu^+ \mu^-$



| $q^2$ bin                              | LP   |      |      | NLP                         |       | uncertainty of "NLP all"          |                                                |                    |                    |  |  |
|----------------------------------------|------|------|------|-----------------------------|-------|-----------------------------------|------------------------------------------------|--------------------|--------------------|--|--|
| $[\mathrm{GeV}^2]$                     | LO   | NLO  | loc  | $\mathrm{loc} + \mathrm{A}$ | all   | $\mu_{h,hc}$                      | $\lambda_{B_q},  \widehat{\sigma}_{B_1}^{(q)}$ | $r_{\rm LP}$       | total              |  |  |
| $B_s \rightarrow \gamma \mu \bar{\mu}$ |      |      |      |                             |       |                                   |                                                |                    |                    |  |  |
| $[4m_{\mu}^2,  6.0]$                   | 2.32 | 2.96 | 3.81 | 4.03                        | 12.43 | $\substack{\oplus 0.11 \\ -0.56}$ | $^{+3.56}_{-1.42}$                             | $^{+1.39}_{-1.19}$ | $^{+3.83}_{-1.93}$ |  |  |
| [2.0,  6.0]                            | 0.40 | 0.34 | 0.31 | 0.36                        | 0.30  | $^{+0.01}_{-0.04}$                | $^{+0.21}_{-0.08}$                             | $^{+0.14}_{-0.11}$ | $^{+0.25}_{-0.14}$ |  |  |
| [3.0,  6.0]                            | 0.30 | 0.22 | 0.19 | 0.22                        | 0.21  | $^{+0.01}_{-0.03}$                | $^{+0.18}_{-0.07}$                             | $^{+0.10}_{-0.08}$ | $^{+0.20}_{-0.10}$ |  |  |
| [4.0,  6.0]                            | 0.22 | 0.15 | 0.12 | 0.15                        | 0.15  | $^{+0.01}_{-0.02}$                | $^{+0.14}_{-0.05}$                             | $^{+0.07}_{-0.05}$ | $^{+0.16}_{-0.08}$ |  |  |
| $[4m_{\mu}^2,  8.64]$                  | 2.77 | 3.24 | 4.05 | 4.34                        | 12.74 | $^{+0.14}_{-0.60}$                | $^{+3.85}_{-1.50}$                             | $^{+1.54}_{-1.31}$ | $^{+4.15}_{-2.08}$ |  |  |

Bins above 
$$q^2 > 2 \text{ GeV}^2$$
 are  
theoretically on more solid ground but  
have branching fractions below  $10^{-9}$