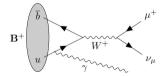
Prospects for the search of ${\cal B}^+_{(c)} \to \mu^+ \nu_\mu \gamma\, {\rm decays}$ at LHCb

Martino Borsato¹, Fabian Glaser^{2,3}, Marie-Hélène Schune³

¹Milano-Bicocca University, INFN Sezione di Milano-Bicocca, Italy ²Universität Heidelberg, Physikalisches Institut, Germany ³Université Paris-Saclay, CNRS/IN2P3, IJCLab, Orsay, France

February 28th 2024



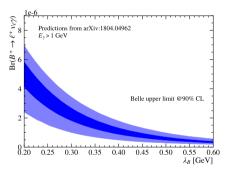
Why $B^+ \rightarrow \ell^+ \nu_\ell \gamma$ is interesting

- Standard Model tree level process
- Strong helicity suppression is lifted by emission of additional photon
- Decay $B^+
 ightarrow \ell^+
 u_\ell \gamma$ has never been observed
- Current best upper limit from Belle using $\ell=e,\mu$ [PRD 98 (2018) 11, 112016]

$$\mathcal{B}(B^+ o \ell^+
u_\ell \gamma) < 3.0 imes 10^{-6}$$
 @90%CL

• Considered the golden mode to probe B^+ meson substructure

Leading order Feynman diagram for the decay $B^+
ightarrow \mu^+
u_\mu \gamma$.

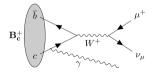

Fabian Glaser (IJCLab Orsay)

Probing the B^+ meson substructure

• Emission of γ probes first inverse moment λ_B of B meson light-cone distribution amplitude

[Eur.Phys.J.C 71 (2011) 1818]

- Value of λ_B not well known but vital theory input
 [PRD 69 (2004) 034014] [Nucl.Phys.B 832 (2010) 109-151] [PLB 848 (2024) 138345]
- Strong dependence of predicted BR for $B^+ o \ell^+
 u_\ell \gamma$ on λ_B
- Theory predictions only valid for $E_\gamma^*>1.5\,{
 m GeV}$ with extrapolation to $E_\gamma^*>1.0\,{
 m GeV}$ [JHEP 07 (2018) 154]

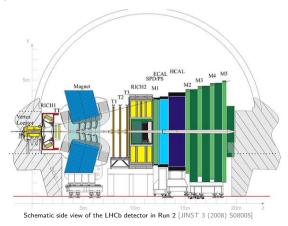

Predicted BR for $B^+ \rightarrow \ell^+ \nu_\ell \gamma$ from [JHEP 07 (2018) 154] with the upper limit from Belle. The colored bands correspond to different theory models.

On the decay $B_c^+ ightarrow \mu^+ u_\mu \gamma$

- Should be very similar to decay of B^+
- Never been searched for
- Potential background for the analysis of $B^+ o \mu^+
 u_\mu \gamma$
- Expect roughly similar rate [Phys.Rev.D 100 (2019) 11, 112006][PTEP 2022 (2022) 083C01]

$$\frac{N_{sig}(B_c^+ \to \mu^+ \nu_\mu \gamma\,)}{N_{sig}(B^+ \to \mu^+ \nu_\mu \gamma\,)} \approx \frac{|V_{cb}|^2}{|V_{ub}|^2} \frac{f_c}{f_u} \approx 1$$

- In general limited knowledge of the B_c^+ meson
- What can we learn from $B_c^+ \to \mu^+ \nu_\mu \gamma\,?$


Feynman diagram for the decay ${\it B}^+_{\it C}
ightarrow \mu^+
u_\mu \gamma$.

Fabian Glaser (IJCLab Orsay)

Search for the decays ${\it B}^+ \to \mu^+ \nu_\mu \gamma$ and ${\it B}^+_c \to \mu^+ \nu_\mu \gamma$ at LHCb

The LHCb experiment

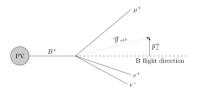
- Single arm forward spectrometer covering $2 < \eta < 5$
- Tracking and vertexing: Vertex Locator (VELO), TT, Magnet, T1-T3
- Particle identification (PID): RICH, Calorimeters, Muon stations M1-M5

Reconstructing $B^+_{(c)} ightarrow \mu^+ \nu_\mu \gamma$ at LHCb

- Very challenging to reconstruct at hadron colliders, deemed impossible
- Two major challenges: Vertex reconstruction and Neutrino momentum recovery

Vertex reconstruction

- B mesons produced in pp collisions
- Select B candidates from displaced secondary decay vertex
- Single charged track in $\mu^+ \nu_\mu \gamma$ \Rightarrow no vertex reconstruction possible
- Crucial to require $\gamma \rightarrow e^+e^-$ conversions \Rightarrow multiple charged tracks allow for vertex reconstruction
- Conversions in LHCb's vertex locator (VELO) provide excellent vertex resolution

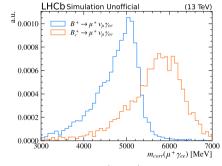

Reconstructing $B^+_{(c)} \rightarrow \mu^+ \nu_\mu \gamma$ at LHCb

Neutrino momentum recovery

- At LHCb cannot infer neutrino momentum from initial decay kinematics
- Correct for momentum imbalance p_{\perp} perpendicular to B flight direction

$$m_{corr}=\sqrt{m^2(\mu^+\gamma_{ee})+|m{p}_{\perp}|^2}+|m{p}_{\perp}|$$

• Requires precise reconstruction of B decay vertex



Analysis strategy

- Using data recorded with LHCb experiment from 2016-2018 corresponding to $\mathcal{L}_{int}=5.4 {\rm fb}^{-1}$
- Reconstruct the photon using $\gamma \rightarrow e^+e^-$ conversions in LHCb's VELO
- Search for signal peak in m_{corr} using binned template fit
- Background modelling from data-driven templates

Blinding strategy

• Signal region 4500 ${\rm MeV} < {\rm m_{corr}}(\mu^+\gamma_{\rm ee}) < 6500\,{\rm MeV}$ remains blinded

Corrected mass distribution for $B^+_{(c)} \rightarrow \mu^+ \nu_\mu \gamma$ simulation. The grey area is the blinded signal region.

Signal selection

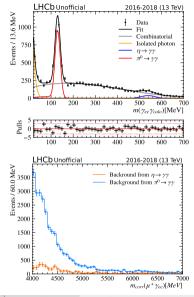
- Trigger selection (hardware + software)
- Cut based selection: kinematics, decay topology, reconstruction quality
- Boosted Decision Trees (BDT) to suppress:
 - Random combination of μ^+ and γ_{ee}
 - Decays with additional charged tracks e.g. $B^+ \to D^0 (\to K^- \pi^+ \gamma_{ee}) \mu^+ \nu$
 - Decays with additional neutral clusters e.g. $\pi^0 \to \gamma_{ee} \gamma$
- Currently optimising the signal selection

Trigger	Requirement
L0 trigger	LOElectron or LOMuon
HLT1	B_TrackMVA or B_TwoTrackMVA
HLT2	B_Topo[2,3]Body or B_TopoMu[2,3]Body
Trigger requirements to select ${\it B}^+_{(c)} o \mu^+ u_\mu \gamma$ candidates.	

Background modelling $\pi^0/\eta \rightarrow \gamma_{ee}\gamma$

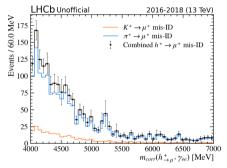
Partially reconstructed $\pi^0/\eta \rightarrow \gamma_{ee}\gamma$

- By far the dominant source of background
- Expect much higher level of background compared to Belle
- Many sources including
 - $$\begin{split} b &\rightarrow u\ell\nu: \\ \bullet & B^+ \rightarrow \pi^0 \mu^+ \nu_\mu \\ \bullet & B^+ \rightarrow \eta \mu^+ \nu_\mu \\ \bullet & B^0 \rightarrow \rho(770)^- (\rightarrow \pi^- \pi^0) \mu^+ \nu_\mu \\ b &\rightarrow c\ell\nu: \\ \bullet & B^+ \rightarrow \overline{D}^{(*)0} (\rightarrow h^+ h^- \pi^0 ...) \mu^+ \nu_\mu \\ \bullet & B^0 \rightarrow D^{(*)-} (\rightarrow h^- \pi^0 ...) \mu^+ \nu_\mu \\ \end{split}$$
 Decays of $B_s, B_c, \Lambda_b: \\ \bullet & B_s \rightarrow D_s^- (\rightarrow h^- \pi^0 ...) \mu^+ \nu_\mu \\ \end{cases}$ Random combinations of $\pi^0/\eta + \mu^+$
- $\bullet\,$ Modeling all backgrounds from $\pi^0/\eta\to\gamma_{ee}\gamma$ not feasible using simulation
- \Rightarrow Data-driven template including all sources of π^0 and η

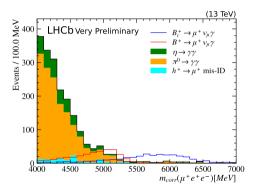

Background modelling $\pi^0/\eta \rightarrow \gamma_{ee}\gamma$

Get $\pi^0/\eta \rightarrow \gamma_{ee}\gamma$ background shape from data

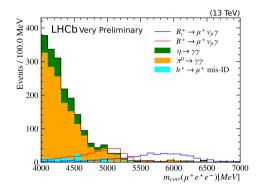
- Search region in the calorimeter for missing photon from $\pi^0/\eta\to\gamma_{ee}\gamma$ decays
- Fit resulting distribution in $m(\gamma_{ee}\gamma_{calo})$
- Subtract background to get shape in $m_{corr}(\mu^+\gamma_{ee})$
- Correct for efficiency of finding additional photon and resolving π^0/η


 \Rightarrow Representative of all $\pi^0/\eta \rightarrow \gamma_{ee}\gamma$ backgrounds scaled to expected yield

 \Rightarrow Crucial to get the background modelling correct \Rightarrow Requires further cross-checks


Background modelling muon mis-identification

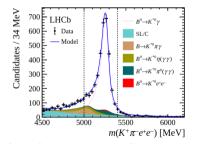
- Studied using control sample without PID requirement on muon track
- Select representative samples of $\pi^+/K^+ \to \mu^+$
- Get $m_{corr}(h^+_{
 ightarrow \mu^+}\gamma_{ee})$ shape with muon-mass hypothesis on the hadron
- Correct for the PID efficiency


Template for background from $h^+
ightarrow \mu^+$ mis-identification.

- Optimisation performed of pseudo-experiments
- Generate background only pseudo-data from derived templates
- Fit including signal shapes for $B^+_{(c)}
 ightarrow \mu^+
 u_\mu \gamma$
- Binned template fit using method from Conway [arXiv:1103.0354] to account for template uncertainties
- Signal selection not yet finalised

Background-only pseudo-data and signal shapes with arbitrary normalisation.

- Idea: Maximise sensitivity on $\mathcal{B}(B^+ o \mu^+
 u_\mu \gamma)$
- For optimisation: Bayesian method with flat prior
- Computationally less demanding
- In the case of no significant signal after unblinding: $CL_{S}\ method\ [J.Phys.G 28\ (2002)\ 2693-2704]$

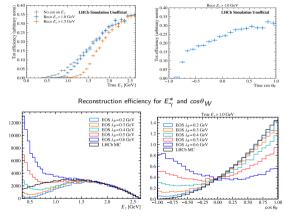


Background-only pseudo-data and signal shapes with arbitrary normalisation.

Normalisation channel

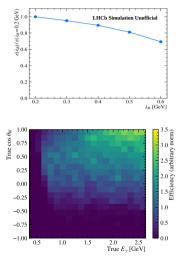
 $B^0
ightarrow {\cal K}^{*0} \gamma_{ee}$ with ${\cal K}^{*0}
ightarrow {\cal K}^+ \pi^-$

- No muon but very clean and can largely follow previous LHCb analysis [JHEP 12 (2020) 081]
- ${\cal B}(B^0 o {\cal K}^{*0} \gamma) = (4.18 \pm 0.25) imes 10^{-5}$ [PTEP 2022 (2022) 083C01]
- Align selection as much as possible with selection of $B^+_{(c)}
 ightarrow \mu^+
 u_\mu \gamma$
- Expect about 1200 events for 2016-2018



Massfit from the B^0 \rightarrow $K^{*0}e^+e^-$ analysis at very low q^2 using Run 1+2 [JHEP 12 (2020) 081] .

Fabian Glaser (IJCLab Orsay)


Model dependence

- BR prediction reliable for $E_{\gamma}^* > 1.5\,{
 m GeV}$
- \bullet Decided to cut at $E_{\gamma}^* > 1.0 \, {\rm GeV}$ following Belle
- Distributions in E_{γ}^{*} and $\cos \theta_{W}$ depend on B^{+} meson LCDA
- Studied using EOS [Eur.Phys.J.C 82 (2022) 6, 569] with the model from [JHEP 10 (2022) 162]
- Non-uniform efficiency in cosθ_W introduces strong model dependence

Model dependence of E_{γ}^{*} and $\cos \theta_{W}$ on the parameter λ_{B}

- Model dependence on λ_B of up to 30%
- \bullet Calculated using phase-space simulation reweighted in in $cos\theta_W$ and E_γ^*
- \bullet Interpreting BR in terms of λ_B also non-trivial, LCDA not only depends on λ_B
- \bullet Currently no LCDA model for $B_c^+ \to \mu^+ \nu_\mu \gamma$
- Present main result for $E_\gamma^*>1.0\,{\rm GeV}$ using simple well-defined LCDA model to allow easy comparison with Belle
- Provide full efficiency map in E_{γ}^* and $cos\theta_W$ to allow for re-interpretation and change of model parameters

Efficiency dependence on λ_B (top) and exemplary efficiency map in E^*_γ and $cos \theta_W$ (bottom).

Summary

- First search for $B^+
 ightarrow \mu^+ \nu_\mu \gamma$ at LHCb
- First search for $B_c^+
 ightarrow \mu^+ \nu_\mu \gamma$
 - Comes for free in LHCb analysis
 - Which information can we gain from $B_c^+ o \mu^+
 u_\mu \gamma$?
- Analysis possible using photon conversion in VELO for vertex reconstruction and peaking m_{corr}
- Analysis strategy is in place
 - ullet Developed new data-driven method to model background from π^0 and η
 - First optimisation maximising sensitivity on ${\cal B}(B^+ o \mu^+
 u_\mu \gamma)$ in place
- Selection of candidates still being optimised
- Further cross-checks of the background modelling required
- Expected sensitivity towards ${\cal B}(B^+_{(c)} o \mu^+
 u_\mu \gamma)$ soon to be evaluated

Future prospects

- Expect to collect three times more data during Run 3 of the LHC
- Commissioning almost completed and expect good quality data in 2024 and 2025
- Removed LHCb's hardware trigger
- ullet Improved algorithms for reconstruction of $\gamma \to e^+e^-$
- Hopefully LHCb can contribute to the Belle2 studies of $B^+ \rightarrow \mu^+ \nu_\mu \gamma$ and provide clean experimental constraints on B meson LCDA

