

Search for $B \to \ell \overline{\nu}_{\ell} \gamma$ with Belle & (naive) Prospects with Belle II

Based on Phys. Rev. D 98, 112016 (2018) and

Thesis of Dr. Moritz Gelb https://publish.etp.kit.edu/record/21546

ONN

Florian Bernlochner (florian.bernlochner@uni-bonn.de

b

Why : Access to λ_B and also in principle $|V_{ub}|$

How : Exploit experimental signature

Why : Access to λ_B and also in principle $|V_{ub}|$

How : Exploit experimental signature

High momentum lepton

Other processes do as well, e.g. $B \to X_u \ell \bar{\nu}_\ell$; need good PID

Why : Access to λ_B and also in principle $|V_{\mu b}|$

How : Exploit experimental signature

Challenges

High momentum lepton \longrightarrow Other processes do as well, e.g. $B \to X_u \ell \bar{\nu}_\ell$; need good PIDMissing Energy \longrightarrow Need information about rest of event (ROE)

Why : Access to λ_B and also in principle $|V_{ub}|$

How : Exploit experimental signature

High momentum lepton		Other processes do as well, e.g. $B \to X_u \mathcal{C} \bar{\nu}_{\mathcal{C}}$; need good PID
Missing Energy		Need information about rest of event (ROE)
High energy photon	\rightarrow	Need good neutrals reconstruction, focus on $E_{\gamma} > 1 { m GeV}$

Why : Access to λ_B and also in principle $|V_{\mu b}|$

How : Exploit experimental signature

Other considerations: low BF ~ 10⁻⁶

Important Backgrounds : $B \to [\pi^0 \to]\gamma \gamma \ell \bar{\nu}_{\ell} \qquad B \to [\eta \to]\gamma \gamma \ell \bar{\nu}_{\ell}$

Search uses full Belle data set of 711/fb, will talk a bit about Belle II prospects later

$Lookir_{B^{d}}$	1.5 1.0						
Status bef	0.5						
	0.30	0.35	0.40	0.45	0.50	0.55	0.60
Experiment	IJa	na ser (10	ر. بالم	$\lambda_B [\text{GeV}]$	(10)	Comm	
CLEO (1997) [1	5]	2.5	$\mathcal{B}(\mathbb{R})$	$B^+ \to e^+ \nu_e$	$_{e}\gamma) < 52$		
BaBar (2009) [2]]	423	$\mathcal{B}(\mathbf{B})$ $\mathcal{B}(\mathbf{B})$	$^{+} \rightarrow \mu^{+} \nu_{\mu}$ $B^{+} \rightarrow e^{+} \nu_{e}$ $B^{+} \rightarrow \mu^{+} \mu$	$(\gamma) < 200$ $(\gamma) < 17$ $(\gamma) < 24$	-) mod	el-independent
Belle (2015) [1]		711	$\mathcal{B}(\mathbf{B})$ $\Delta \mathcal{B}(\mathbf{C})$ $\Delta \mathcal{B}(\mathbf{C})$ $\Delta \mathcal{B}(\mathbf{C})$	$ \begin{array}{c} \rho \rightarrow \mu \nu_{\mu} \\ + \rightarrow \ell^{+} \nu_{\ell} \\ B^{+} \rightarrow \ell^{+} \nu \\ B^{+} \rightarrow e^{+} \nu \\ B^{+} \rightarrow \mu^{+} \nu \\ B^{+} \rightarrow \ell^{+} \nu \end{array} $	$\left(\begin{array}{c} \gamma \gamma$	$\begin{cases} \text{mod} \\ \text{with } E \\ \end{cases}$ with	$E_{\gamma} > 1 \text{GeV}$ $E_{\gamma} > 1 \text{GeV}$

		$B^+ \to e^+ \nu_e \gamma$	$B^+ \to \mu^+ \nu_\mu \gamma$	Combined
\longrightarrow	$N_{\rm New}$	24.8	25.7	50.5
$N_{ m Published}$	8.0	8.7	16.5	

New analysis strategy : factor ~ 3 higher signal efficiency

Belle accumulated significant data set on the $\Upsilon(4S) = \langle b\overline{b} \rangle$.

Detector has near 4π coverage, fine EM calorimeter & PID capabilities

Analysis in a nutshell

Veto against events with large **unassigned** neutral energy depositions

- 3. Veto against events with large **unassigned** neutral energy depositions
- 4. Use calorimeter granularity to veto against collimated $\gamma\gamma$
- 5. Use event information to further suppress backgrounds

Hadronic Tagging

Reconstruct second B using a hierarchical reconstruction approach — the so-called **Full Event Interpretation**

arXiv:1807.08680 [hep-ex]

- $\textbf{Stage 0} \hspace{0.1in} \text{Collection of final state particles reconstructed from clusters and tracks.}$
- **Stage 1** Reconstruction of π^0 and J/ψ candidates.
- **Stage 2** Reconstruction of K_S^0 candidates.
- $\label{eq:stage 3} Stage \ 3 \ {\rm Reconstruction} \ of \ D \ candidates.$
- **Stage 4** Reconstruction of D^* candidates.
- $\label{eq:stage 5} Stage 5 \ {\rm Reconstruction} \ of \ {\rm B} \ {\rm candidates}.$

Algorithm beats previous multivariate algorithm, especially using **low purity** modes in terms of efficiency

Output : Single classifier output that quantifies the quality of the tag-candidate

Challenge : Calibration of efficiencies

Usually train the FEI using **generic** MC (using $\Upsilon(4S) \rightarrow B\overline{B}$ decays into every final state)

Here we exploit the above and produce a **specific training** to boost the efficiency

Tagging algorithm	Reconstructed	$\Upsilon(4S)$ candidates (%)
	Electron	Muon
Generic FEI	1.50	1.63
Signal-specific FEI	1.80	1.95

Sample	Variable	Cut
$B^+ \to \ell^+ \nu_\ell \gamma$	eID	> 0.8
	muID	> 0.8
	E_{γ}	$> 1.0 \mathrm{GeV}$
	M_B	$\in\ (1.0,6.0)\mathrm{GeV}$
$B^+ \to \pi^0 \ell^+ \nu_\ell$	eID	> 0.8
	muID	> 0.8
	p_ℓ	$\geq 300{\rm MeV}$
	M_{π^0}	$\in (115, 152) \mathrm{MeV}$
	M_B	$\in\ (1.0, 6.0)\mathrm{GeV}$

Additional Cuts

Variable	Cut
M	$\in [7.5, 10.5]\mathrm{GeV}$
ΔE	$\in [-0.15, 0.1] \mathrm{GeV}$
$M_{ m bc}$	$\in [5.27, 5.29]\mathrm{GeV}$
$E_{\rm ECL}$	$\leq 0.9{\rm GeV}$
$M_{\rm miss}^2$	$\in (-1.5, 3.0) \mathrm{GeV}^2$
$E9E25_{\gamma}$	> 0.9
$P_{\rm FEI}$	> 0.01
Remaining $N_{\rm tracks}$	= 0

Large amount of peaking background left

Some Continuum left

Continuum Suppression

 T_{B} , T_{ROE} The magnitude of the thrust of the B_{sig} candidate and the ROE, respectively. The thrust T is calculated from the momenta $\vec{p_i}$ of the final state particles as

$$=\frac{\sum_{i}^{N} |\vec{T}\vec{p}_{i}|}{\sum_{i}^{N} |\vec{p}_{i}|},\tag{5.3}$$

where \vec{T} denotes the direction of the maximal total momentum.

T

- $\cos \theta_{B,z}$, $\cos \theta_{B,ROE}$ The angle between the thrust axis of the daughter particles of the B_{sig} candidate and the z-axis and the ROE, respectively. As stated above, continuum events are more jet-like and so large angles are expected between the B_{sig} candidate and its ROE. The distribution is uniform for $B\bar{B}$ events.
- R2 To characterize the event shape by energy and momentum flow in the event the so-called Fox-Wolfram Moments were developed [45]. The moments are calculated as

$$H_{l} = \sum_{i,j}^{N} \frac{|\vec{p}_{i}| \, |\vec{p}_{j}|}{s} \, P_{l}(\cos(\phi_{ij})), \tag{5.4}$$

where N is the number of particles in the event, s is the squared center-ofmass energy, \vec{p}_x is the momentum of the particle x, ϕ_{ij} is the angle between the particles i and j, and P_l is the *l*-th Legendre polynomial. The reduced Fox-Wolfram Moment R2 is defined as the ratio $R2 = H_2/H_0$.

- Kakuno-Super-Fox-Wolfram Moments The improved Fox-Wolfram-Moment were developed by the Belle collaboration [23, p.114]. In total there are 17 such moments.
- **Cleo Cones** In the 90's the CLEO Collaboration introduced the so-called Cleo Cones. Nine cones in 10° steps around the B_{sig} thrust axis are defined. Within these intervals the momentum flow is calculated as the scalar sum of the final state particles pointing in the interval [46].

Peaking Background Suppression

2nd Step: Look at global properties to veto $B \rightarrow \gamma \gamma \ell \bar{\nu}_{\ell}$

Peaking Background Suppression

Signal efficiency

2nd Step: Look at global properties to veto $B \to \gamma \gamma \ell \bar{\nu}_{\ell}$

	Signal efficiency	Background rejection					
	$B^+ \to \ell^+ \nu_\ell \gamma$	Rare	$b \to u \ell \nu_\ell$	$B^+ \to \eta \ell^+ \nu_\ell$	$B^+ \to \pi^0 \ell^+ \nu_\ell$	$e^+e^- \to q\bar{q}$	$\mathbf{b} \to \mathbf{c}$
E9E25	0.960	0.080	0.050	0.040	0.080	0.20	0.080
$\theta_{ u\gamma}$	1.000	0.150	0.010	0.020	0.020	0.14	0.010
$M_{\rm bc}$	0.780	0.820	0.750	0.410	0.370	0.87	0.780
M_{π} veto	0.960	0.290	0.450	0.080	0.680	0.43	0.430
$P_{\rm CS}$	0.860	0.630	0.340	0.200	0.210	0.95	0.460
$P_{\rm PB}$	0.860	0.700	0.380	0.440	0.430	0.63	0.520
$P_{\rm FEI}$	0.640	0.650	0.590	0.440	0.430	0.68	0.650
Comb.	0.406	0.992	0.972	0.839	0.911	0.99	0.989

Where to cut? Global optimization

23

More things to check prior unblinding:

Tagging efficiency needs to be calibrated

Reconstruct $B^+ \to \pi^0 \ell^+ \nu_\ell$ as control mode

Tagging Calibration

Idea: combine standard candle and well measured validation channel

0.75

1.00

 $\epsilon = \frac{N_{\text{data}}}{N_{\text{MC}}}$

1.25

0.50

Average efficiency correction:

$$\epsilon_{\rm all} = \frac{N_{\rm data}}{N_{\rm MC}} = 0.825 \pm 0.014 \pm 0.049,$$

Also tested tag-side composition

Validation : Determine $B^+ \to \pi^0 \ell^+ \nu_\ell$ BF via binned NLL fit in M^2_{miss}

Final Fit & Systematic Uncertainties

	$\mathcal{B}(B^+ \to \pi^0 \ell^+ \nu_\ell)$	$\Delta \mathcal{B}(B^+ \to \ell^+ \nu_\ell \gamma)$
Source	in 10^{-5}	in 10^{-6}
Calibration	± 0.49	± 0.09
Reconstruction efficiency	± 0.20	± 0.01
\mathcal{L}_{LID} efficiency	± 0.16	± 0.02
$N_{B\overline{B}}$	± 0.11	± 0.02
Tracking efficiency	± 0.03	± 0.0
Peaking background BDT	± 0.02	± 0.24
PDF templates	± 0.08	± 0.18
BCL model	± 0.25	± 0.01
Reconstructed tag channel	± 0.01	± 0.14
$B \to X_u \ell^+ \nu_\ell$	± 0.02	± 0.07
Signal model	± 0.00	± 0.03
Combined	± 0.62	± 0.36

Result

$$\Delta \mathcal{B} = \frac{N_{\text{sig},i}}{\epsilon_i \cdot 2 \cdot \mathcal{B}(\Upsilon(4S) \to B^+B^-) \cdot N_{B\bar{B}}},$$

30

Find: $\Delta \mathcal{B}(B^+ \to \ell^+ \nu_{\ell} \gamma) = (1.4 \pm 1.0 \pm 0.4) \times 10^{-6}, \quad \mathcal{B}(B^+ \to \pi^0 \ell^+ \nu_{\ell}) = (7.9 \pm 0.6 \pm 0.6) \times 10^{-5},$

						$\mid \Delta \mathcal{B}(B^+ \to$	$\ell^+ \nu_\ell \gamma) \lim$	nit (10^{-6})
ℓ	$\left \mathcal{B}(B^+ \to \pi^0 \ell^+ \nu_\ell) \right (10^{-5})$	σ	$\Delta \mathcal{B}(B^+ \to \ell^+ \nu_\ell \gamma) \ (10^{-6}$) σ	ℓ	BaBar [35]	Belle [11]	This work
e	$8.3^{+0.9}_{-0.8}\pm0.9$	8.0	$1.7^{+1.6}_{-1.4} \pm 0.7$	1.1	e	-	< 6.1	< 4.3
μ	$7.5^{+0.8}_{-0.8}\pm0.6$	9.6	$1.0^{+1.4}_{-1.0} \pm 0.4$	0.8	μ	-	< 3.4	< 3.4
e,μ	$7.9^{+0.6}_{-0.6}\pm0.6$	12.6	$1.4^{+1.0}_{-1.0} \pm 0.4$	1.4	e,μ	< 14	< 3.5	< 3.0

Usual approach: Use measured partial BF and $|V_{ub}|$ to solve for λ_B

Solving for λ_B

Our new idea:

M. Beneke (Munich, Tech. U.), V.M. Braun (Regensburg U.), Yao Ji (Regensburg U.), Yan-Bing Wei (Munich, Tech. U. and Beijing, Inst. High Energy Phys.)

JHEP 07 (2018) 154, 1804.04962 [hep-ph]

$$R_{\pi} = \frac{\Delta \mathcal{B}(B^{+} \to \ell^{+} \nu_{\ell} \gamma)}{\mathcal{B}(B^{+} \to \pi^{0} \ell^{+} \nu_{\ell})} = \frac{\Delta \Gamma(\lambda_{B})}{\Gamma(B^{+} \to \pi^{0} \ell^{+} \nu_{\ell})}, \qquad \text{Independent of } |V_{ub}|$$

$$Measure \qquad \text{HFLAV BCL Fit (with FLAG input)}$$

$$\Gamma(B^{+} \to \pi^{0} \ell^{+} \nu_{\ell}) = |V_{ub}|^{2} \times (2.4 \pm 0.2) \times 10^{-12} \text{ GeV}.$$

$$R_{\pi}^{\text{meas}} = (1.7 \pm 1.4) \times 10^{-2}.$$

some systematics cancel

5-

4

3

0 + 0.

 $\frac{R_{\pi} \times 10^2}{5}$

Can also use $R_{\pi} : \Delta \mathscr{B}(\mathscr{B} \to \ell \bar{\nu}_{\ell} \gamma)$ to simultaneously solve for $\lambda_B : |V_{ub}|$

Looking Forward to Belle II

The future: Belle II

Naive **luminosity** scaling of stat. error

(sig. with respect to found central value)

	Belle	Belle II	Belle II
	$711{\rm fb}^{-1}$	$5 \mathrm{ab}^{-1}$	$50 \mathrm{ab}^{-1}$
Stat. uncertainty	$\pm 71\%$	$\pm 27\%$	$\pm 9\%$
Significance	1.3σ	3.3σ	6.4σ

Precise determinations of λ_B possible (~ 50 MeV), but | V_{ub} | precision limited to ~8% in simultaneous determination

Experimental limitation about **4.5%** if λ_B known from theory

Looking Forward to Belle II

The future is hard to predict .. picture could change if

- Progress on tagging is made (and with inclusion of SL tagging)
- Better control and rejection of $B\to\gamma\gamma\ell\bar\nu_\ell$
- Better control and rejection of $B \to X_u \ell \bar{\nu}_\ell$
- Better rejection on collimated photons; more data will allow to explore this data driven with e.g. hadronic decays
- Input on λ_B from theory (no simultaneous determination)
- Simultaneous analyses with $B \to \gamma^* \ell \bar{\nu}_\ell$
- Differential Measurements as a function of q^2/E_{γ} etc.

Backup

â

11 1111

Florian Bernlochner (florian.bernlochner@uni-bonn.de

Fixed a mean bug in $B \to \pi \ell \bar{\nu}_{\ell}$ MC that affected old measurement :

