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V. Cirigliano, A. Crivellin, M. Hoferichter, M. Moulson, Phys. Lett. B 838, 137748 (2023)

∆
(1)
CKM = |V β

ud|2 + |V Kℓ3

us |2 − 1 = −0.00176(56) [−3.1σ]

∆
(2)
CKM = |V β

ud|2 + |V Kℓ3/Kℓ2;β
us |2 − 1 = −0.00098(58) [−1.7σ]

∆
(3)
CKM = |V Kℓ3/Kℓ2;Kℓ3

ud |2 + |V Kℓ3

us |2 − 1 = −0.0164(63) [−2.6σ]
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kaons) that occur also in other processes



K± → π+π−e±ν

- Geneva-Saclay high-statistics experiment: 3 · 104 events, a0 at 20%

L. Rosselet et al., Phys. Rev. D 15, 574 (1977)

- BNL-E865: 4 · 105 events

S. Pislak et al., Phys. Rev. 67, 072004 (2003) [Phys. Rev. 81, 119903 (2010)] [hep-ex/0301040]

- NA48/2: 1.1 · 106 events, a0 at 6%

J. R. Batley et al., Eur. Phys. J. C 70, 635 (2010)

The experimental values of the two S-wave scattering lengths

a0 = 0.222(14) a2 = −0.0432(97)

compare quite well with the prediction from two-loop chiral perturbation theory

a0 = 0.220(5) a2 = −0.0444(10)

G. Colangelo, J. Gasser, H. Leutwyler, Nucl. Phys. B 603, 125 (2001)
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But taking isospin corrections (mu 6= md and Mπ 6= Mπ0) into account
turns out to be crucial in order to reach this agreement

J. Gasser, PoS KAON , 033 (2008), arXiv:0710.3048 [hep-ph]
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note: Mπ0 6= Mπ± is an electromagnetic effect!



ChPT in a nutshell



For µ ≪ Λhad ∼ 1GeV (where kaon physics takes place), the relevant
degrees of freedom are no longer quarks, but the lightest pseudoscalar
mesons that become the Goldstone bosons of the spontaneous breaking of
chiral symmetry in the limit of massless light quarks mu,d,s → 0
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mesons that become the Goldstone bosons of the spontaneous breaking of
chiral symmetry in the limit of massless light quarks mu,d,s → 0

−→ construct an effective lagrangian that describes the interactions among
these pseudoscalar mesons in a systematic low-energy expansion, taking
into account all the constraints that follow from the spontaneously broken

chiral SU(3)L × SU(3)R chiral symmetry S. Weinberg, Physica A 96, 327 (1979)
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−→ systematic expansion in powers of p/Λhad (with mq ∼ p2, i.e.

M 2
π ∼ p2)

−→ starts at O(p2), power counting consistent with loop expansion

Lstr(2) =
F 2
0

4
〈∂µU †∂µU〉 − <q̄q>

2
〈M(U + U †)〉+ · · ·

M = diag(mu,md,ms)
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Lstr = Lstr
2 (2) + Lstr

4 (10 + 0) + Lstr
6 (90 + 23) + Lstr

8 (1233 + 705) + · · ·
J. Gasser, H. Leutwyler, Nucl. Phys. B 250, 465 (1985)

J. Bijnens, G. Colangelo, G. Ecker, JHEP 02, 020 (1999); Annals Phys. 280, 100 (2000)

J. Bijnens, L. Girlanda, P. Talavera, Eur. Phys. J. C 23, 539 (2002)

T. Ebertshaüser, H. W. Fearing, S. Scherer, Phys. Rev. D 65, 054033 (2002)

J. Bijnens, N. Hermansson-Truedsson, S. Wang, JHEP 01 (2019)

J. Bijnens, N. Hermansson-Truedsson, J. Ruiz-Vidal, JHEP 01 (2024)

Loops with mesons prodice divergences that are absorbed by the
counterterms (low-energy constants)
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• what about semi-leptonic decays?



• Semi-leptonic transitions

At the quark level:

LSL
eff = −GF√

2

[

ℓ̄γµ(1− γ5)νℓ
]

{Vud [ūγ
µ(1− γ5)d] + Vus [ūγ

µ(1− γ5)s]}+ h. c.

- No QCD corrections in LSL
eff

- factorized form

- the description of semi-leptonic decays amounts to the evaluation of the

relevant form factors:

〈0|[d̄γµγ5u](0)|π+〉 [πℓ2] 〈0|[s̄γµγ5u](0)|K+〉 [Kℓ2]

〈π0|[d̄γµu](0)|π+〉 [πβ ]

〈π0|[s̄γµγ5u](0)|K+〉 [K+
ℓ3] 〈π−|[s̄γµγ5u](0)|K0〉 [K0

ℓ3]

〈ππ|[s̄γµγ5u](0)|K〉 〈ππ|[s̄γµu](0)|K〉 [Kℓ4]

〈πππ|[s̄γµu](0)|K〉 〈πππ|[s̄γµγ5u](0)|K〉 [Ke5]

−→ can be obtained from Lstr
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QED corrections in pion and kaon decays:

the ChPT point of view
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In the presence of electromagnetism, the semi-leptonic interactions do no
longer factorize

−→ loops involving at the same time mesons, photons and leptons

−→ need to also include the light leptons in the low-energy EFT

∂µU −→ ∂µU−ieAµ[Q,U ]+iU
∑

ℓ

(ℓ̄γµνℓLQw+νLγµℓQ
†
w) Qw = −2

√
2GF







0 Vud Vus

0 0 0

0 0 0







Llept = Llept
2 (0) + Llept

4 (5) + · · · Llept
2 (0) =

∑

ℓ

[(ℓ̄(i6∂ + e 6A−mℓ)ℓ+ νℓLi6∂νℓL]

Llept
4 =

5
∑

i=1

XiOlept
i

M. K., H. Neufeld, H. Rupertsberger, P. Talavera, Eur. Phys. J. C 12, 469 (2000)



Crucial issue: determination of low-energy constants

•Ki

- identify the corresponding QCD correlators (two-, three- and four-point functions), in the

chiral limit, convoluted with the free photon propagator

- study their short-distance behaviour

- write spectral sum rules

- saturate with lowest-lying narrow-width resonances

B. Moussallam, Nucl. Phys. B 504, 391 (1997) [hep-ph/9701400]

B. Ananthanarayan, B. Moussallam, JHEP06, 047 (2004) [hep-ph/0405206]

Analogous to the DGMLY sum-rule for C

C = − 1

16π2

3

2π

∫ ∞

0

ds s ln
s

µ2
[ρV V (s)− ρAA(s)]

T. Das, G. S. Guralnik, V. S. Mathur, F. E. Low and J. E. Young, Phys. Rev. Lett. 18, 759 (1967)

B. Moussallam, Eur. Phys. J. C 6, 681 (1999) [hep-ph/9804271]

does not depend on the scale µ2 of the logarithm because of the 2nd Weinberg sum rule!

S. Weinberg, Phys. Rev. Lett. 18, 507 (1967)



Crucial issue: determination of low-energy constants

•Xi

- two-step matching procedure:

i) compute radiative corrections to q̄q′ → ℓν in the SM and in the four-fermion theory

ii) match the radiatively corrected four-fermion theory to the chiral lagrangian, by identifying

the QCD correlators (convoluted with the free photon propagator) that describe the Xi’s

Saturate the resulting spectral sum rules with lowest-lying resonance states

S. Descotes-Genon, B. Moussallam, Eur. Phys. J. C 42, 403 (2005) [hep-ph/0505077]



Applications to many examples (non-exhaustive list)

– π → ℓνℓ(γ) and K → ℓνℓ(γ) M. K., H. Neufeld, H. Rupertsberger, P. Talavera, Eur. Phys. J. C 12, 469 (2000)

V. Cirigliano, I. Rosell, JHEP 0710, 005 (2007)

J. Gasser, G. R. S. Zarnauskas, Phys. Lett. B 693, 122 (2010)

V. Cirigliano, H. Neufeld, Phys. Lett. B 700, 7 (2011)

– K → πℓνℓ(γ) V. Cirigliano, M. K., H. Neufeld, H. Rupertsberger and P. Talavera, Eur. Phys. J. C 23, 121 (2002)

A. Kastner, H. Neufeld, Eur. Phys. J. C 57, 541 (2008)

V. Cirigliano, M. Giannotti, H. Neufeld, JHEP 0811, 006 (2008)

J. Gasser, B. Kubis, N. Paver, M. Verbeni, Eur. Phys. J. C 40, 205 (2005)

– π+ → π0eνe V. Cirigliano, M. K., H. Neufeld, H. Pichl, Eur. Phys. J. C 27, 255 (2003)

– K+ → π+π−ℓνℓ V. Cuplov, PhD thesis (2004); V. Cuplov, A. Nehme, hep-ph/0311274

A. Nehme, Nucl. Phys. B 682, 289 (2004)

P. Stoffer, Eur. Phys. J. C 74, 2749 (2014)

– K+ → π0π0ℓνℓ V. Bernard, S. Descotes-Genon and M. K., Eur. Phys. J. C 75, 145 (2015)

– . . . V. Cirigliano, G. Ecker, H. Neufeld, A. Pich, J. Portolés, Rev. Mod. Phys. 84, 399 (2012)
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Two case studies: K00
e4 and πβ



NA48/2 has measured the two K±

e4 channels:

K+−
e4 [i.e. K± → π+π−e±νe], about 106 events

J. R. Batley et al. [NA48/2 Coll.], Phys. Lett. B 715, 105 (2012)

K00
e4 [i.e. K± → π0π0e±νe], about 6.5 · 104 events (unitarity cusp in Mπ0π0 seen)

J. R. Batley et al. [NA48/2 Coll.], JHEP 1408, 159 (2014)

In the isospin limit, there is a form factor common to the two matrix elements, whose

normalization fs can thus be measured in both decay distribution

|Vus|fs[K+−
e4 ] = 1.285± 0.001stat ± 0.004syst ± 0.005ext,

(1 + δEM )|Vus|fs[K00
e4 ] = 1.369± 0.003stat ± 0.006syst ± 0.009ext

i.e.

(1 + δEM )
fs[K

00
e4 ]

fs[K
+−
e4 ]

= 1.065± 0.010

where δEM is an unspecified coefficient supposed to account for unknown radiative

corrections

Can one understand this 6.5% effect in terms of isospin breaking?

−→ need to understand how radiative corrections were treated in the K+−

e4 mode...



Treatment of radiative corrections in the data analyses:

K00
e4 : no radiative corrections whatsoever applied (hence the factor δEM!)

K+−

e4 :

– Sommerfeld-Gamow-Sakharov factors applied to each pair of charged legs

– Corrections induced by emission of real photons treated with PHOTOS
Z. Wa̧s et al., Comp. Phys. Comm. 79, 291 (1994); Eur. Phys. J. C 45, 97 (2006); C 51, 569 (2007);

Q.-J. Xu, Z. Wa̧s, Chin. Phys. C 34, 889 (2010)

– PHOTOS also implements (1 loop QED) w.f.r. on the external charged legs and virtual

photon exchanges between charged external legs [−→ no IR divergences], based on

Y. M. Bystritskiy, S. R. Gevorkian, E. A. Kuraev, Eur. Phys. J. C 67, 47 (2009)

– All structure-dependent corrections are discarded (gauge invariant truncation)
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(
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– correct treatment is to include the counterterms Ki and Xi and to renormalize the form

factors
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Non factorizable radiative corrections

Besides w.f. factors of QED, only diagram (a) is considered in a PHOTOS-like treatment of radiative corrections

[diagrams (b), (c), and (d) vanish for me → 0]

Adding the diagrams for the emission of a soft photon, one obtains

Γtot = Γ(K00
e4 ) + Γsoft(K00

e4γ) = Γ0(K
00
e4 )× (1 + 2δEM ) with δEM = 0.018

−→ fs[K
00
e4 ]

fs[K
+−

e4
]
= 1.047± 0.010

V. Bernard, S. Descotes-Genon, M. K., Eur. Phys. J. C 75, 145 (2015)
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−→ isospin breaking in the quark masses

fs[K
00
e4 ]

fs[K
+−
e4 ]

∣

∣

∣

∣

LO

=

(

1 +
3

2R

)

= 1.039± 0.002

V. Cuplov, PhD Thesis (2004); A. Nehme, Nucl. Phys. B 682, 289 (2004)

R =
ms −mud

md −mu
= 38.2(1.1)(0.8)(1.4)

Z. Fodor et al. [BMW Coll.], Phys. Rev. Lett. 117, 082001 (2016)
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- pure vector transition (like super-allowed Fermi transitions, but unlike neutron β decay)

- no problem with nuclear transition matrix elements in evaluation of radiative corrections (like

neutron β decay, but unlike super-allowed Fermi transitions)

- protected from first-order isospin breaking corrections (Ademollo-Gatto-Sirlin theorem)
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Serious drawback: Γπβ
/Γtot ∼ 1 · 10−8

PIBETA exp. at PSI: Γπβ
/Γtot = [1.036± 0.004stat ± 0.004syst ± 0.003πe2

] · 10−8

∼ 106π+/sec, 6.4 · 104 events −→ V PIBETA
ud = 0.9739(30)
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−→ cleanest way to extract Vud

Serious drawback: Γπβ
/Γtot ∼ 1 · 10−8

PIBETA exp. at PSI: Γπβ
/Γtot = [1.036± 0.004stat ± 0.004syst ± 0.003πe2

] · 10−8

∼ 106π+/sec, 6.4 · 104 events −→ V PIBETA
ud = 0.9739(30)

D. Pocanić et al. (PIBETA Coll.), Phys. Rev. Lett. 93, 181803 (2004) [hep-ex/0312030]

PIONEER proposal at PSI could deliver ∼ 7 · 105 (∼ 7 · 106) events during phase II (III)

W. Altmannshofer et al. [PIONEER], [arXiv:2203.01981 [hep-ex]]
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High precision reached by the data concerning non-leptonic and semi-leptonic decay modes

of the kaons has made the treatment of isospin-breaking effects (mu 6= md and α 6= 0)

unavoidable

A lot of activity has been going on, extending the scope of the low-energy EFT in order to

meet this necessity (inclusion of photons, leptons). Only a fraction of the many applications

has been mentioned here

The issue of additional low-energy constants has been dealt with in a rather satisfactory

manner, but these phenomenological estimates may not be sufficient in order to match the

experimental precision in the future

The effects due to Mπ 6= Mπ0 are important (e.g. for Ke4).

ChPT at NLO is not always sufficient.

−→ This issue can be dealt with through more elaborate/adapted approaches, like NREFT,

dispersive representations,...
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Radiative corrections to differential decay rates can, locally, be more important, e.g.

∼ ±10%

d2Γ

dxdy
=

d2Γ0

dxdy
[1 + αδ(x, y)] αδ(x, y) ∼ ±(1− 10)%

[cf. also situations where there are experimental cuts...]

Emission of soft photons can sometimes lift the helicity suppression:

for instance in B → µνµ
(

MB

mµ

)2

× α is not small...

D. Bećirević, B. Haas, E. Kou, Phys. Lett. B 681, 257 (2009)
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|M0|2
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1 +
(−1)

2
e1e2

2πα

v12((p1 + p2)2)

]

−→

|M0|2T (η12), T (η) =
η

1− e−η
= 1 +

η

2
+ · · · , η12 ≡ −e1e2

2πα

v12



Most of the time, radiative corrections are small, knowing them at 10% or even 20% relative

precision is usually sufficient
G. Martinelli, talk at KAON2016

Interesting prospects from lattice QCD (at least for kaons)

G. Anzivino et al., Workshop summary – Kaons@CERN 2023 [arXiv:2311.02923 [hep-ph]]

There are many interesting situations where low-energy effective theory does not apply

(hadronic tau decays, semi-leptonic decays of B and D mesons)...

...for each situation the appropriate framework must be found



Thanks for your attention!


