Constraining the EOS and Symmetry Energy with Neutron Star Mergers

NuSym2024, Caen France Sept 10, 2024

David Tsang, University of Bath

Illlustration: NASA CXC/M.Weiss

https://web.infn.it/CSN4/IS/Linea3/STRENGTH/

Sun-like Star

Red Giant

ons of Years

Planetary Nebula

٠

TEX.S.

White Dwarf

Massive Star

(more than 8 to 10 times the mass of our Sun)

Millions of Years

Red Supergiant

Protostars

Star-Forming Nebula

Neutron Star

Supernova

Black Hole

1 OUTER CRUST

NUCLEI ELECTRONS

2 INNER CRUST

NUCLEI ELECTRONS SUPERFLUID NEUTRONS

3 | CORE

..............................

3

SUPERFLUID NEUTRONS SUPERCONDUCTING PROTONS HYPERONS? DECONFINED QUARKS? COLOR SUPERCONDUCTOR?

Watts et al. (2016) Rev. Mod. Phys., 88, 021001

Stable NS

Adapted from Sarin & Lasky (2021) GR&G, 53, 6, 59

Adapted from Pang et al., (2023) Nature Comm, 14:8352

Kilonovae and Short Gamma Ray Bursts tell us a lot about the messy post-merger physics! But it's difficult to extract info about the neutron star progenitors themselves. However, they can provide some (qualitative) information on merger remnants, potentially probing the even higher density cores of HMNSs/SMNSs.

EM: Kilonovae/GRB

EM: Kilonovae/GRB

Stable NS

Adapted from Sarin & Lasky (2021) GR&G, 53, 6, 59

signature Σ

EM: Kilonovae/GRB

signature Σ

EM: Kilonovae/GRB

20-50% mass error 100% vej error (Due to thermalisation or nuclear model)

> Brethauer, Kasen, Margutti, & Chernock, arXiv:2408.02731

Huge systematics for individual events/interpretations!

Adapted from Pang et al., (2023) Nature Comm, 14:8352

GW (post merger)

124051 93, PRD, Takami (2016, Rezzolla &

Post Merger Ringing of SMNS/HMNS. Not detectable with this generation - but likely with 3G

011001 Ő. 9) PRX, LVC (201

Adapted from Pang et al., (2023) Nature Comm, 14:8352

 $Q_{ij} = -\Lambda \frac{\partial \Phi_{\text{ext}}}{\partial x^i \partial x^j}$

The lowest order at which the EOS contributes to the the GW waveform is through the "tidal deformability" Λ

(Quadrupolar polarizability?)

 $-\Lambda \frac{\partial \Psi_{\text{ext}}}{\partial x^i \partial x^j}$

Courtesy of J. Read, adapted from Read (2023) CQG, 40 135002

Frequency (Hz)

GW170817 LVC (2018), PRL, 121, 161101

GWs (Inspiral)

lacovelli et al. (2023) PRD, 108, 122006

Adapted from Pang et al., (2023) Nature Comm, 14:8352

lacovelli et al. (2023) PRD, 108, 122006

Assuming the star is nucleonic constraints can be placed on the isovector/isoscalar parameters

lacovelli et al. (2023) PRD, 108, 122006

Modes probe the structure where their eigenfunctions are concentrated

GWs (Inspiral)

Asteroseismology!

(resonant during inspiral)

Ho & Andersson (2023), PRD 108, 043003

Adapted from Pang et al., (2023) Nature Comm, 14:8352

Multi-messenger Precursors (RSFs)

Pygmy Quadrupole Resonance?

DT, et al. (2012) PRL 108, 011102 DT (2013) ApJ 777, 103 Neill, DT, Van Eerten, Ryan, & Newton (2022) MNRAS, 514, 4

Multi-messenger Precursors (RSFs)

Pygmy Quadrupole Resonance?

Neill, DT, Van Eerten, Ryan, & Newton (2022) MNRAS, 514, 4

(2012) PRL 108, 011102 DT (2013) ApJ 777, 103 n (2022) MNRAS, 514, 4

Density weighted average shear speed

Neill, Newton, & DT (2021), MNRAS 504, 1, 1129

Neill, Preston, Newton & DT (2023), PRL, 130, 112701

Neill, Preston, Newton & DT (2023), PRL, 130, 112701

Neill, Preston, Newton & DT (2023), PRL, 130, 112701

Multi-messenger Precursors (RSFs)

Neill, Drischler, Holt, Newton & DT (2024) in prep

Advertisements:

eXtreme Matter in eXtreme Stars Lorentz Center, Netherlands Sept 23-27, 2024

Observables & Metadata Database