Status, Problems, and Perspectives on Symmetry Energy

Pawel Danielewicz

Facility for Rare Isotope Beams Michigan State University

NUSYM 2024, International Symposium on Nuclear Symmetry Energy

Grand Accèlèrateur National d'Ions Lourds, Caen, France

September 9-14, 2024

Symmetry Energy

医肾管医肾管

SOF

0.20

FRIB

Symmetry-Energy in *n*-Star & Other Basics

$$rac{E}{A} = rac{E_0}{A}(
ho) + S(
ho) \left(rac{
ho_n -
ho_p}{
ho}
ight)^2 \qquad S \simeq a_a^V + rac{L}{3}rac{
ho -
ho_0}{
ho_0}$$

Neutron matter: $\rho_{\rho} \approx 0$, $\rho_{n} \approx \rho$ & $\frac{E}{A}(\rho) \approx \frac{E_{0}}{A}(\rho) + S(\rho)$ & $S(\rho) \approx \frac{E_{n}}{A}(\rho) - \frac{E_{0}}{A}(\rho)$

$$\Rightarrow \text{Pressure:} \quad P = \rho^2 \frac{d}{d\rho} \frac{E}{A} \simeq \rho^2 \frac{dS}{d\rho} \simeq \frac{L}{3\rho_0} \rho^2$$

Stiffer symmetry energy \Rightarrow larger max mass of neutron star & larger radii

Speed of sound: $c_s^2 = \frac{dP}{de}$, where $e = \rho \left(\frac{E}{A} + m_N\right)$ Quark-matter free-asymptotics: $P \approx e/3$, $c_s^2 \approx 1/3$, & in degenerate gas $\frac{E_n}{A} \approx 5.66 \hbar c \rho^{1/3}$, $\frac{E_0}{A} \approx 5.52 \hbar c \rho^{1/3}$, $S \approx 0.14 \hbar c \rho^{1/3}$ MINUTE

Pressure of Symmetric Matter

On microscopic side, chiral effective field theory (EFT) aims to extrapolate nuclear properties up to $\rho \sim 2\rho_0$. Interpolation btw such ρ & perturbative-QCD region suggests large intermediate increase in c_s^2 Semposki *et al* arXiv.2404.06323

Heavy-Ion Data Interpretation

STAR Collaboration Au+Au beam-energy scan probes different regions of symmetric-matter equation of state (EOS). Tension btw STAR & older E895 results and different flow coefficients in theory analyses w/o momentum dependence in interactions

FOPI Flow Analyzed in SMASH

Flow: anisotropy associated w/reaction plane in emission, $v_n = \langle \cos n\phi \rangle$

Tarasovicova *et al* arXiv:2405.09889

Lower-energy data favor soft momentumdependent (SP) interaction and higher-energy favo stiff (HP)

Zhang&Chen PRC92(15)031301 Electric dipole polarizability tests symmetry energy at $\rho_0/3$: Pearson coef

Lynch&Tsang PLB830(22)137098 Tension btw inferences released when they are attributed to proper ρ

Including Tension Between PREX & CREX Results?? Piekarewicz PBC109(24)045807 Tension btw ²⁰⁸Pb and ⁴⁸Ca neutron-skin

Salinas&Piekarewicz PRC109(24)045807

Reed et al PRC109(24)035803

Average ρ lower in ⁴⁸Ca than ²⁰⁸Pb

Tension btw ²⁰⁸Pb and ⁴⁸Ca neutron-skin measurements could be resolved w/symmetry energy that quickly changes character near ρ_0 and lacks parabolic form. Other problems result!

HIC and Astro combined:

Combining Laboratory w/Astronomical Data

Constraining neutron-star matter with microscopic and macroscopic collisions

Bayesian combinations

Huth, Pang et al Nature 606(22)276

HIC experiments:

Updated Analysis

(Tommy) Tsang *et al* Nature Astronomy 8(24)328

Additional symmetryenergy constraints included

Sotani *et al* PTEP2022 (22)041D01

Reducing Fragility of Transport Conclusions

Transport-Model Evaluation-Project: Models evaluated under controlled conditions Review: Wolter *et al* PPNP122(22)103962

History

- 2009/2014, Au + Au at 100 & 400 MeV/nucl Xu *et al* PRC93(16)044609 $\rho(\mathbf{r})$ -evolution & nucleonic observables (stopping, flow) differences hard to understand \rightarrow switch to simplified conditions
- 2018-21, Box w/periodic boundaries, close to equilibrium, analytic limits Mean field, collision term, π production in cascade mode
- 2023, Again HIC: Sn + Sn at 270 MeV/nucl Xu et al PRC109(24)044609
 Subthreshold π production for different symmetry energies in the context of SπRIT measurements

4 D N 4 B N 4 B N 4 B

Moving Forward in HIC

Good agreement w/o mean field, but not so good with, due to differences in nucleon evolution

Comprehensive Data Analysis Needed

Moving Forward in HIC

Analysis of stopping and flow in FOPI measurements $v_n = \langle \cos n\phi \rangle$ Cozma arXiv:2407.16411

Comprehensive Data Analysis Needed

Many parameters & assumptions & very narrow constraints! Cozma arXiv:2407.16411

Other Important Asymmetry-Dependent Unknowns

E.g. effective mass splitting $\Delta m_{np}^*/(m\delta)$, where $\Delta m_{np}^* = m_n^* - m_p^* \& \delta = (\rho_n - \rho_p)/\rho$ Transport analyses of Sn+Sn collision-data yield negative splitting

(Tommy) Tsang et al PLB853(24)138661

Coupland et al PRC94(16)011601

Other Inferences Point to Positive Splitting

Transport Struggles w/Subthreshold Processes

Jhang et al PLB813(21)136016

Pions in 270MeV/nucl Sn+Sn

Without novel assumptions, models miss the data

High-Statistics Opportunities in Data: Impact Parameter

Towards more discerning information by suppressing impact-parameter averaging

Reaction-Plane Orientation

Single-particle distributions relative to fixed direction of reaction plane

PD&Kurata-Nishimura PRC105(22)034608 $dN(\phi_{est}) = \int dN(\phi_{tru}) P(\phi_{est} | \phi_{tru}) d\phi_{tru}$

Bayesian deconvolution to yield distributions relative to true reaction plane

Figure from transport theory; data processed

Conclusions

- Symmetry energy relatively small in high- ρ limit of asymptotic freedom
- For complicated energy functionals, symmetry energy may depend on definition
- At $\rho > \rho_0$, only data for EOS of symmetric matter from heavy-ion collisions
- $\bullet\,$ Speed of sound maximizes between low and high ρ
- Different data constrain $S(\rho)$ @ different ρ
- Reducing transport-model uncertainties critical f/narrowing EOS constraints
- High-statistics of data can facilitate extraction of new observables

DOE DE-SC0019209

