Astrophysics and Nuclear Physics Informed Interactions in Dense Matter: Inclusion of PSR J0437-4715

Phys.Rev.D 110 (2024) 4, 4
Tuhin Malik, Veronica Dexheimer and Constança Providência

Tuhin Malik

CFisUC, University of Coimbra

September 10, 2024

NUSYM 2024, XIIth International Symposium on Nuclear Symmetry Energy, 9-14 Sept, 2024, GANIL, CaenKERK A BRANER IN STROK

Objectives

- \triangleright How vector-isoscalar and vector-isovector interactions can be determined within the density regime of neutron stars while fulfilling nuclear and astrophysical constraints?
- ▶ The impact of latest radius measurement of PSR J0437-4715 $(M = 1.418 \pm 0.037 M_{\odot}, R = 11.36^{+0.95}_{-0.63}$ km) from the NASA NICER mission on EOS [Choudhury et al 2024 ApJL 971 L20].

Enforcing Nuclear and Astro Constraints

- 1. Minimal Saturation Properties: The saturation density is $\rho_0 = 0.16 \pm 0.005$ fm $^{-3}$, with a binding energy per nucleon of $\epsilon_0 = -16.1 \pm 0.2$ MeV, and a symmetry energy of $J_0 = 30 \pm 2$ MeV at saturation.
- 2. Low-Density Neutron Matter Constraints: We impose constraints on the energy per particle at densities of 0.05, 0.1, 0.15, and 0.20 fm $^{-3}$, as informed by various x EFT calculations.
- 3. High-Density Constraints from pQCD: Constraints derived from perturbative QCD (pQCD) at seven times ρ_0 for the highest renormalizable scale $X = 4$ (Komoltsev Kurkela, PRL128(2022)202701).
- 4. Astrophysical Constraints: Mass-radius measurements from PSR J0030+0451, PSR J0740+6620, and tidal deformability from GW170817. Additionally, we discuss recent mass-radius NICER results for PSR J0437-4715.

CMF

The chiral invariant selfinteraction terms of the vector mesons $\mathcal{L}_{\text{vec}}^{\text{Self}}$:

C1:
$$
\mathcal{L}_{\text{vec}}^{\text{Self}} = g_{4,1}(\omega^4 + 6\omega^2 \rho^2 + \rho^4)
$$

\nC2: $\mathcal{L}_{\text{vec}}^{\text{Self}} = g_{4,2}(\omega^4 + \rho^4)$
\nC3: $\mathcal{L}_{\text{vec}}^{\text{Self}} = g_{4,3}(\omega^4 + 2\omega^2 \rho^2 + \rho^4)$
\nC4: $\mathcal{L}_{\text{vec}}^{\text{Self}} = g_{4,4}(\omega^4)$

We preserve chiral invariance and study combinations of the above coupling schemes to :

 $1)$ Isolate each one of the three independent terms:

- ► x: $\mathcal{L}_{\text{vec}}^{\text{Self}} = x \rho^2 \omega^2$;
- \blacktriangleright y: $\mathcal{L}_{\text{vec}}^{\text{Self}} = y \rho^4$;
- ▶ z: $\mathcal{L}_{\text{vec}}^{\text{Self}} = z\omega^4$;

2) Consider the combination of two terms:

- ▶ xz: $\mathcal{L}_{\text{vec}}^{\text{Self}} = x \rho^2 \omega^2 + z \omega^4$;
- 3) Consider a combination of the three terms:

$$
\blacktriangleright \ \ \text{xyz:} \ \ \mathcal{L}_{\mathrm{vec}}^{\mathrm{Self}} = x \rho^2 \omega^2 \, + \, y \rho^4 \, + \, z \omega^4 ;
$$

KORKARYKERKER POLO

Results & Conclusions

The 90% credible interval region for the resulting posterior in various cases: (left) the equation of state for pure neutron matter, (right) the mass-radius relationship for neutron stars.

- The $\omega^2 \rho^2$ interaction term in the CMF model is essential for precisely capturing current neutron-matter x EFT constraints at low density.
- ▶ The latest NICER observations of PSR J0437-4715 achieve a modest reduction of around ∼ 0.1 km in the posterior radius of the neutron star mass-radius relation but notably decrease the Bayes factor $(\ln K_{\text{xyz}|\text{xyz}}=1.97)$. Substantial evidence!
- Indicating discrepancies between recent NICER data and past observations, or that the CMF model with nonlinear components explains older data better, suggesting the need for a new interaction term or additional degrees of freedom.

KORKAR KERKER ST VOOR

The 90% credible interval for the resulting posterior: (left) mass-tidal deformability of NS, and (right) quantity d_c related to trace anomaly $d_c = \sqrt{\Delta^2 + \Delta^{'2}}$. Here, $\Delta' = c_s^2 \,\,(1/\gamma - 1)$ is the logarithmic derivative of $\Delta = 1/3 - P/\epsilon$ with respect to energy density, approaching zero in the conformal limit and squre of speed of sound c_s^2 .

- \triangleright The set z is the one that reproduces the worst of the data, followed by set y.
- **▶ The Bayes factor we have obtained ln** $K_{\text{XVZ,XZ}} = 0.05$ **, ln** $K_{\text{XVZ,X}} = -0.73$ **, ln** $K_{\text{XVZ,Y}} = 3.4$ **,** In K_{xyz} $z = 6.09$, showing that there is a strong evidence of model xyz with respect to models y and z, but no large difference with respect to models x and xz.
- ▶ These results indicate that the properties proposed in [Nature Commun. 14, 8451 (2023)] for identifying deconfined matter are not unique. Models of nuclear matter, like the CMF model, which do not include deconfinement, may exhibit similar properties. The term ω^4 drives this behavior.

 $\mathbf{E} = \mathbf{A} \oplus \mathbf{B} + \mathbf{A} \oplus \mathbf{B} + \mathbf{A} \oplus \mathbf{B} + \mathbf{A} \oplus \mathbf{A}$

 2990

Acknowledgments

- ▶ This work was partially supported by national funds from FCT (Fundação para a Ciência e a Tecnologia, I.P, Portugal) under projects UIDB/04564/2020 and UIDP/04564/2020, with DOI identifiers 10.54499/UIDB/04564/2020 and 10.54499/UIDP/04564/2020, respectively, and the project 2022.06460.PTDC with the associated DOI identifier 10.54499/2022.06460.PTDC. The authors acknowledge the Laboratory for Advanced Computing at the University of Coimbra for providing HPC resources that have contributed to the research results reported within this paper.
- ▶ V. D. acknowledges support from the Fulbright U.S. Scholar Program and the National Science Foundation under grants PHY1748621, MUSES OAC-2103680, and NP3M PHY-2116686.

Thank You!

KORK ERKER ADAM ADA

Bayesian Setup

 \triangleright NMP:

where $P(m|EoS)$ can be written as:

 $\mathcal{L}(\mathcal{D}_{\rm MMP}|\theta) = \frac{1}{\sqrt{2\pi\sigma^2}}\exp\left(\frac{-(D(\theta)-D_{\rm MMP})^2}{2\sigma^2}\right) = \mathcal{L}^{\rm MMP}$

The PNM constraints for χ EFT:

 $P(m|\text{EoS}) = \begin{cases} \frac{1}{M_{\text{max}}-M_{\text{min}}} & \text{if } M_{\text{min}} \le m \le M_{\text{max}} \\ 0 & \text{otherwise.} \end{cases}$

Here, M_{min} is 1 M_{\odot} , and M_{max} represents the maximum mass of a NS for the given equation of state (EOS).

$$
\mathcal{L}^{\rm PNM}(\epsilon_{\chi \rm EFT, i} | \theta) = \tfrac{1}{2\sigma_i} \cdot \tfrac{1}{\exp\left(\tfrac{\left|\epsilon_{\chi \rm EFT, i} - \epsilon_{\rm PNM, i}(\theta)\right| - \sigma_i}{\rho}\right) + 1}
$$

▶ X-ray observation (NICER):

$$
P(d_{\text{X-ray}}|\text{EoS}) = \int_{M_{\text{min}}} dm P(m|\text{EoS})
$$

$$
\times P(d_{\text{X-ray}}|m, R(m,\text{EoS})) = \mathcal{L}^{\text{NICER}}
$$

where
$$
P(d_{\text{pQCD}}|\theta) = 1
$$
 if it is within d_{pQCD} ;

 $\mathcal{L}(d_{\text{pQCD}}|\theta) = P(d_{\text{pQCD}}|\theta) = \mathcal{L}^{\text{pQCD}}$

otherwise zero;

GW:

▶ pQCD:

The final likelihood for the calculation is then given by:

$$
P(d_{\rm GW}|{\rm EoS}) = \int_{M_{\rm min}}^{M_{\rm max}} dm_1 \int_{M_{\rm min}}^{m_1} dm_2 P(m_1, m_2|{\rm EoS})
$$

× $P(d_{\rm GW}|m_1, m_2, \Lambda_1(m_1, {\rm EoS}), \Lambda_2(m_2, {\rm EoS})) = \mathcal{L}^{\rm GW}$

 $\mathcal{L} = \mathcal{L}^{\text{NMP}} \mathcal{L}^{\text{PNM}} \mathcal{L}^{\text{pQCD}} \mathcal{L}^{\text{GW}} \mathcal{L}^{\text{NICERI}} \mathcal{L}^{\text{NICERI}} \mathcal{L}^{\text{NICERII}}$

KORKARYKERKER POLO

$$
P(d_{\text{X-ray}}|\text{EoS}) = \int_{M_{\text{min}}}^{M_{\text{max}}} dm P(m|\text{EoS})
$$

$$
(\mathbf{u},\mathbf{v},\mathbf{v})\in\mathbb{R}^{n\times n}
$$

Symmetry energy posterior

Symmetry energy posterior with respect to baryon density obtained within the 90% CI for the five distinct groups of CMF instances under study. We also compare the constraints from IAS [P. Danielewicz and J. Lee, Nuc[l. P](#page-6-0)[hys](#page-7-0)[.](#page-6-0) [A 9](#page-7-0)[22](#page-0-0)[,](#page-1-0) [1](#page-7-0) [\(2](#page-0-0)[0](#page-1-0)[14\)](#page-7-0)[\]](#page-0-0)

 Ω