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Objectives
▶ How vector-isoscalar and vector-isovector interactions can be determined within

the density regime of neutron stars while fulfilling nuclear and astrophysical
constraints?

▶ The impact of latest radius measurement of PSR J0437-4715
(M = 1.418± 0.037 M⊙, R = 11.36+0.95

−0.63 km) from the NASA NICER mission
on EOS [Choudhury et al 2024 ApJL 971 L20].

Enforcing Nuclear and Astro Constraints
1. Minimal Saturation Properties: The saturation density is ρ0 = 0.16± 0.005

fm−3, with a binding energy per nucleon of ϵ0 = −16.1± 0.2 MeV, and a
symmetry energy of J0 = 30± 2 MeV at saturation.

2. Low-Density Neutron Matter Constraints: We impose constraints on the
energy per particle at densities of 0.05, 0.1, 0.15, and 0.20 fm−3, as informed by
various χEFT calculations.

3. High-Density Constraints from pQCD: Constraints derived from perturbative
QCD (pQCD) at seven times ρ0 for the highest renormalizable scale X = 4
(Komoltsev Kurkela, PRL128(2022)202701).

4. Astrophysical Constraints: Mass-radius measurements from PSR J0030+0451,
PSR J0740+6620, and tidal deformability from GW170817. Additionally, we
discuss recent mass-radius NICER results for PSR J0437-4715.



CMF

The chiral invariant self-
interaction terms of the vector
mesons LSelf

vec :

C1: LSelf
vec = g4,1(ω

4+6ω2ρ2+
ρ4)
C2: LSelf

vec = g4,2(ω
4 + ρ4)

C3: LSelf
vec = g4,3(ω

4+2ω2ρ2+
ρ4)
C4: LSelf

vec = g4,4(ω
4)

We preserve chiral invariance and
study combinations of the above
coupling schemes to :

1) Isolate each one of the three independent terms:

▶ x: LSelf
vec = xρ2ω2;

▶ y: LSelf
vec = yρ4;

▶ z: LSelf
vec = zω4;

2) Consider the combination of two terms:

▶ xz: LSelf
vec = xρ2ω2 + zω4;

3) Consider a combination of the three terms:

▶ xyz: LSelf
vec = xρ2ω2 + yρ4 + zω4;



Results & Conclusions
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The 90% credible interval region for the resulting posterior in various cases: (left) the equation of state for pure
neutron matter, (right) the mass-radius relationship for neutron stars.

▶ The ω2ρ2 interaction term in the CMF model is essential for precisely capturing current neutron-matter
χEFT constraints at low density.

▶ The latest NICER observations of PSR J0437-4715 achieve a modest reduction of around ∼ 0.1 km in the
posterior radius of the neutron star mass-radius relation but notably decrease the Bayes factor
(lnKxyz,xyzJ0437 = 1.97). Substantial evidence!

▶ Indicating discrepancies between recent NICER data and past observations, or that the CMF model with
nonlinear components explains older data better, suggesting the need for a new interaction term or
additional degrees of freedom.
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The 90% credible interval for the resulting posterior: (left) mass-tidal deformability of NS, and (right) quantity dc

related to trace anomaly dc =

√
∆2 + ∆

′2. Here, ∆′ = c2s (1/γ − 1) is the logarithmic derivative of
∆ = 1/3 − P/ϵ with respect to energy density, approaching zero in the conformal limit and squre of speed of

sound c2s .

▶ The set z is the one that reproduces the worst of the data, followed by set y.

▶ The Bayes factor we have obtained lnKxyz,xz = 0.05, lnKxyz,x = −0.73, lnKxyz,y = 3.4,
lnKxyz,z = 6.09, showing that there is a strong evidence of model xyz with respect to models y and z,
but no large difference with respect to models x and xz.

▶ These results indicate that the properties proposed in [Nature Commun. 14, 8451 (2023)] for identifying
deconfined matter are not unique. Models of nuclear matter, like the CMF model, which do not include
deconfinement, may exhibit similar properties. The term ω4 drives this behavior.
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Bayesian Setup
▶ NMP:

L(DNMP|θ) = 1√
2πσ2

exp
(
−(D(θ)−DNMP)

2

2σ2

)
= LNMP

▶ The PNM constraints for χEFT:

LPNM(ϵχEFT,i |θ) = 1
2σi

· 1

exp

(
|ϵχEFT,i−ϵPNM,i (θ)|−σi

p

)
+1

▶ pQCD:

L(dpQCD|θ) = P(dpQCD|θ) = LpQCD

where P(dpQCD|θ) = 1 if it is within dpQCD;

otherwise zero;

▶ GW:

P(dGW|EoS) =
∫ Mmax

Mmin

dm1

∫ m1

Mmin

dm2P(m1,m2|EoS)

×P(dGW|m1,m2,Λ1(m1,EoS),Λ2(m2,EoS)) = LGW

where P(m|EoS) can be written as:

P(m|EoS) =
{ 1

Mmax−Mmin
if Mmin ≤ m ≤ Mmax ,

0 otherwise.

Here, Mmin is 1 M⊙, and Mmax represents the maxi-

mum mass of a NS for the given equation of state (EOS).

▶ X-ray observation (NICER):

P(dX−ray|EoS) =
∫ Mmax

Mmin

dmP(m|EoS)

× P(dX−ray|m,R(m,EoS)) = LNICER

The final likelihood for the calculation is then given by:

L = LNMPLPNMLpQCDLGWLNICERILNICERIILNICERIII



Symmetry energy posterior
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Symmetry energy posterior with respect to baryon density obtained within the 90% CI

for the five distinct groups of CMF instances under study. We also compare the

constraints from IAS [P. Danielewicz and J. Lee, Nucl. Phys. A 922, 1 (2014)]


	Introduction

