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The LIGO/Virgo/KAGRA collaboration

Network of detectors:
e Laser Interferometer Gravitational-wave
Observatory (LIGO) in the USA  _))))]]
o Hanford (Washington) *”LIGO
o  Livingston (Louisiana)

e Virgo in ltaly /MN RGO

° Kamioka Gravitational Wave Detector
(KAGRA) in Japan KAGRA

Livingston Hanford
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The LIGO/Virgo/KAGRA collaboration

Network of detectors:
° Laser Interferometer Gravitational-wave

Observatory (LIGO) in the USA
o Hanford (Washington) LIGO

o  Livingston (Louisiana)

e Virgoin ltaly {(@}N' RGD

° Kamioka Gravitational Wave Detector

(KAGRA) in Japan KAGRA

The instruments detect rlpples in space-time
caused by violent and high energy events in the
Universe, such as the merger of two compact
objects.
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The LIGO/Virgo/KAGRA collaboration

Network of detectors:
e Laser Interferometer Gravitational-wave
Observatory (LIGO) in the USA
o Hanford (Washington) LIGO

o  Livingston (Louisiana)

e Virgoin ltaly {MN | RGD

° Kamioka Gravitational Wave Detector
(KAGRA) in Japan KAGRA

The instruments detect rlpples in space-time
caused by violent and high energy events in the
Universe, such as the merger of two compact
objects.

The form (phase and amplitude) of the gravitational
wave emitted by the event depends on:
e  Extrinsic binary parameters: sky localization,

luminosity distance etc.
e Intrinsic parameters: object’s
etc.

, Spins,

The nature of the compact objects merging is
imprinted in the waveform that is detected.
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Observing schedule for the LVK collaboration
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e 3 runs done with published catalogues (GWTC-3).

e Currently in the O4b run.
e Detectors are characterized by their Binary Neutron Star (BNS) range
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e 3 runs done with published catalogues (GWTC-3).
e Currently in the O4b run.
e Detectors are characterized by their Binary Neutron Star (BNS) range



Observations from the first 3 runs of LVK

A lot of Black Holes and just a few (NS).

Masses in the Stellar Graveyard

@

GWTC-3: Compact Binary Coalescences Observed by LIGO and Virgo During the Second Part of the Third Observing Run
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Observations from the first 3 runs of LVK

A lot of Black Holes and just a few (NS).
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Neutron star observations with Gravitational Waves

NS features revealed by the waveform of a NS merger:
m ot (m1mms)¥/?
e the masses of the compact objects impact the waveform M. = 177e2
o measure chirp mass (M) and mass ratio () ¢ (ml i m2)1/5

o  extract individual masses 1m;and ms

—_—my = 20 my = 1'.9
—my=14,m,=1.3
—m =11, m,;=1.0

Using waveform
approximants and a
Bayesian approach, we can

measure masses
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Simulations made with PyCBC: https://doi.org/10.5281/zenodo.10473621



Neutron star observations with Gravitational Waves

NS features revealed by the waveform of a NS merger: 3/5
e (myms)3/ my
e the masses of the compact objects impact the waveform M. = 1772 q=—
o measure chirp mass (M) and mass ratio () ¢ (ml i m2)1/5 mq

o  extract individual masses 1m;and ms ~
e the tidal deformability of the compact objects impact the waveform A\ — f(ml Mo, A\ )\2)
o neutron stars can be deformed by a neighboring gravitational 7 ’ ’

field: tides imprints on the waveform 5[\ — g(ml Mo )\1 )\2)
o measure effective tidals )\ and § from the late inspiral ’ T
o extract individual tidal deformabilities \; and Ao 8 T
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Probing the Equation of State with NS-NS mergers

inside NSs is described by the beta-equilibrated and dense matter

1 EoS model = 1 A(M)sequence = 1A(M., q)
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Probing the Equation of State with NS-NS mergers

inside NSs is described by the beta-equilibrated and dense matter (EoS).
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Probing the Equation of State with NS-NS mergers

Matter inside NSs is described by the beta-equilibrated and dense matter Equation of State (EoS).

e 1EoS model = 1A (M )sequence = 1A(M.,,q)
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Probing the Equation of State with NS-NS mergers

inside NSs is described by the beta-equilibrated and dense matter

e 1EoS model = 1A (M )sequence = 1A(M.,,q)
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Combining multi-messenger constraints
o  astronomy: Xray, radio...
o nuclear physics experiments
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A Neutron Star-Black Hole merger from O4: GW230529

counterparts of NS involved mergers.
Kilonova: signature of radioactive decays of heavy
nuclei,
r-processes in the ejecta or remnant matter,
source of heavy element production !

The Origin of the Solar System Elements
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A Neutron Star-Black Hole merger from O4: GW230529

cou nterparts of NS |nvolved mergers Observation of Gravitational Waves from the Coalescence
. . . . fa25-4.5 M, C t Object and a Neut St
Kilonova: signature of radioactive decays of heavy o7 Ty o TOMPREE TRIEET ARG 8 e =

nuc|ei THE LIGO SCIENTIFIC COLLABORATION, THE VIRGO COLLABORATION, AND THE KAGRA COLLABORATION
)

r-processes in the ejecta or remnant matter, Primary = large mass m1 Primary is filling the *

source of heavy element production ! Secondary = small mass m2 between neutron stars and
previously-observed BBH

”
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Holes LIGO-Virgo-KAGRA Neutron Stars

GWTC-3: Compact Binary Coalescences Observed by LIGO and Virgo During
19 the Second Part of the Third Observing Run



A Neutron Star-Black Hole merger from O4: GW230529

cou nterparts of NS involved mergers. Observation of Gravitational Waves from the Coalescence
. . . . fa25-4.5 M C t Object and a Neut St
Kilonova: signature of radioactive decays of heavy > 7 OMIPAck Thjeck ane & Tentron =t
nuclei THE LIGO SCIENTIFIC COLLABORATION, THE VIRGO COLLABORATION, AND THE KAGRA COLLABORATION
r-processes in the ejecta or remnant matter, Primary = large mass m1 Primary is filling the )
source of heavy element production ! Secondary = small mass m2 between neutron stars and

previously-observed BBH
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A Neutron Star-Black Hole merger from O4: GW230529

Observation of Gravitational Waves from the Coalescence

counterparts of NS involved mergers.
. . . . fa25-4.5 Mgy C t Object and a Neutron St
e Kilonova: signature of radioactive decays of heavy o8 o ompach Thjech and a Teutton Srar
nuclei THE LIGO SCIENTIFIC COLLABORATION, THE VIRGO COLLABORATION, AND THE KAGRA COLLABORATION
e r-processes in the ejecta or remnant matter,
e source of heavy element production ! ,
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A Neutron Star-Black Hole merger from O4: GW230529

Observation of Gravitational Waves from the Coalescence
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A Neutron Star-Black Hole merger from O4: GW230529

cou nterparts Of NS inVO|Ved mergers_ Observation of Gravitational Waves from the Coalescence
. . . . of a 2.5-4.5 M Compact Object and a Neutron Star
e Kilonova: signature of radioactive decays of heavy
nuclei,

e r-processes in the ejecta or remnant matter,
e electromagnetically bright !

THE LIGO SCIENTIFIC COLLABORATION, THE VIRGO COLLABORATION, AND THE KAGRA COLLABORATION

102% - Af:::m,min =0 AJ@
What did we learn from the NS ? N = MP o min = 0.1 Mg
e Uninformative tidal posterior for the neutron E GWTC-3
star... 1\ == With GW230529
e No constraints on the equation of state. = 10 g
2 ;
Yet the source has implications for electromagnetic b=
brightness and heavy element production § 5
e No observed ] 107
o 10% probability of the NS ;
e Remnant baryon mass < (.052M, (99%
credibility) .
].0_1 - =4
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A Neutron Star-Black Hole merger from O4: GW230529

cou nterparts Of NS involved mergers_ Observation of Gravitational Waves from the Coalescence
. . . . of a 2.5-4.5 M Compact Object and a Neutron Star
e Kilonova: signature of radioactive decays of heavy
nuclei THE LIGO SCIENTIFIC COLLABORATION, THE VIRGO COLLABORATION, AND THE KAGRA COLLABORATION

e r-processes in the ejecta or remnant matter,
e electromagnetically bright !

102% — M min =0 Mo
What did we learn from the NS ? N = MP o min = 0.1 Mg
e Uninformative tidal posterior for the neutron ':  GWTC-3
star... | == With GW230529
e No constraints on the equation of state. % 10*
L0
Yet the source has implications for electromagnetic =
brightness and heavy element production § ‘
e No observed EM counterpart... & 100; !
e 10% tidal disruption probability of the NS ;
e Remnant baryon mass < 0.052M4, (99%
credibility) 3
e Fraction of NSBH mergers with remnant matter 10_8'0 o 3’ 03 o1
_ 010 ; : : . .
o <0.18 (with X-Ray data 0.13757,). f : o f(]\/fb > MP )
e NSBH contribution to: EM-bright rem rem,min

o heavy element production: at most 1.1M, /Gpc?/yr
o  GRB: small < 23/Gpc?/yr
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Next generation of detectors: what to expect ?

Project for future detectors:
e LIGO India
o  SKky localization enhanced
o Construction to be completed end 2030s

Courtesy of D. Chatterjee



Next generation of detectors: what to expect ?

Project for future detectors:
e LIGO India
o  SKky localization enhanced
o Construction to be completed end 2030s
e Cosmic Explorer (USA)
o 40km long arms

o  Looking for sites and willing communities
(GWPAC involved)

o NSF-funded, conceptual design underway.

https://dcc.cosmicexplorer.org/CE-G2300014
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Next generation of detectors: what to expect ?

Project for future detectors:
e LIGO India
o  Sky localization enhanced
o Construction to be completed end 2030s
e Cosmic Explorer (USA)
o 40km long arms
o Looking for sites and willing communities
(GWPAC involved)
o NSF-funded, conceptual design underway.
e Einstein Telescope (Europe)
o Triangle (10km), underground and cryo.
o Two candidate sites: Sardinia or
Netherland/Belgium/Germany
o Science operation ~ 2035
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Next generation of detectors: what to expect ?

crojecl ot e defeciors: The Gravitational Wave Spectrum
e LIGO India

o  Sky localization enhanced
o  Construction to be completed end 2030s Bi:,g{gj;p;;g’jgj;jj';“
e Cosmic Explorer (USA) ’ ;
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e Laser Interferometer Space Antenna (LISA)
o Triangular space base detector
o ESA + NASA collaboration
o Launch mid 2030s

Polarization

Detectors

Credit:NASA/ WMAP Science Team



Challenges in an era of high precision detections

Systematics vs statistics

Some assumptions valid for current sensitivity
may not be with next-generation of detectors.
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Challenges in an era of high precision detections

Systematics vs statistics

e Some assumptions valid for current sensitivity
may not be with next-generation of detectors.

We are already preparing for a high precision era !
e Waveform approximant uncertainty

-universal relations
Temperature effects and post merger
Crust breaking under resonant modes (GRBs)
etc...

AX (deir/100 MpC)

Read 2023, Class. Quantum Grav. 40 135002
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Detectability of Finite-Temperature Effects From Neutron Star Mergers with

Next-Generation Gravitational Wave Detectors

Carolyn A. Raithel,"? Vasileios Paschalidis,?*

Resonant shattering flares as multimessenger
probes of the nuclear symmetry energy @

Duncan Neill, William G Newton, David Tsang

Monthly Notices of the Royal Astronomical Society, Volume 504, Issue 1, June 2021, Pages
1129-1143, https://doi.org/10.1093/mnras/stab764

and many others !



Challenges in an era of high precision detections

Systematics vs statistics

e Some assumptions valid for current sensitivity
may not be with next-generation of detectors.

We are already preparing for a high precision era !

e Waveform approximant uncertainty

e Quasi-universal relations

e Temperature effects and post merger

e Crust breaking under resonant modes (GRBs)

o efc...

And constantly developing software for dense matter
analysis with gravitational waves.

LIGO Algorithm Library (LALSuite)

Bilby with GW applications

Likelihood Weighing Protocol (LWP)

CUTER, Reprimand, RIFT etc.
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Resonant shattering flares as multimessenger
probes of the nuclear symmetry energy @

Duncan Neill, William G Newton, David Tsang

Monthly Notices of the Royal Astronomical Society, Volume 504, Issue 1, June 2021, Pages
1129-1143, https://doi.org/10.1093/mnras/stab764

and many others !



Conclusion

Gravitational wave detections expanded
the field of Astronomy.
Currently on the of the
LIGO/Virgo/KAGRA collaboration.
A few mergers involving NSs have taught
us about neutron rich and dense matter
behavior.
Kilonova detections signal heavy
element production in NS involved
mergers.

will see

Credit: NSF/LIGO/Sonoma State University/A. Simonnet
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http://www.youtube.com/watch?v=V6cm-0bwJ98
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http://www.youtube.com/watch?v=x-k112InxfY

