

NUSYM 2024, XIIth International Symposium on Nuclear Symmetry Energy

09-14 set 2024 Caen

OUTLINE

1 – Basics of nuclear collisions at high energy

2 – Bayesian inference of the ²⁰⁸Pb neutron skin

3 – Prospects

1 – Basics of nuclear collisions at high energy

Ultra-relativistic heavy-ion collisions

Long Island (NY)

High energy = Nuclei in the lab frame are squeezed in beam direction

Interaction is instantaneous – Relevant dynamics in the plane transverse to the beam

Relativistic fluid description: $T^{\mu\nu} = (\epsilon + P)u^{\mu}u^{\nu} - Pg^{\mu\nu}$

Equation of state from lattice QCD

[HoTQCD collaboration, PRD **90** (2014) 094503] [Romatschke & Romatschke, arXiv:1712.05815]

Fluid is viscous (η/s , ζ/s , ...)

What we see in the final state reflects properties in the initial state

Hydrodynamics preserves information about the initial geometry

[Bernhard, Moreland, Bass, Nature Phys. 15 (2019) 11, 1113-1117]

2 – Bayesian inference of the ²⁰⁸Pb neutron skin

How do we probe nuclear matter? We probe nuclear structure

Input is number of nucleons and radial profile Skin thickness is an input of the model!

Expected signatures of the neutron skin

- Larger skin yields larger system size
- Consequently, fireball density decreases
- Hydro will develop less radial and elliptic flow

OUR COMPUTATIONAL FRAMEWORK

https://sites.google.com/view/govertnijs/trajectum?authuser=0

Developed in Utrecht by Govert Nijs (CERN) and Wilke van der Schee (CERN/Utrecht)

[Nijs, van der Schee, Gürsoy, Snellings, PRC 103 (2021) 5, 054909 – PRL 126 (2021) 20, 202301]

OUR STRATEGY: BAYESIAN ANALYSIS

$$\begin{aligned} \Pr(p\&D) &= \Pr(p) \times \Pr(D|p) = \Pr(D) \times \Pr(p|D) \\ \text{prior} \times \text{likelihood} = \text{evidence} \times \text{posterior} \end{aligned}$$

Promote neutron diffuseness to a model parameter

$$\rho(r) \propto \frac{1}{1 + e^{(r-R)/\underline{a}}}$$

Protons: density from low-energy scattering [Zenihiro *et al.*, PRC 82 (2010) 044611]

Neutrons: same R as protons, infer a from data

~ 700 data points on Pb+Pb collisions

Extracting the radial profile – Matter radius

$$R_{
m Pb}^2 = rac{1}{208} \left(egin{smallmatrix} 126 \langle r_n^2
angle + 82 \langle r_p^2
angle
ight) \ {
m LHC \ data} \qquad {
m low-energy \ data} \end{cases}$$

- 18 tuned DFT Brussels-Skyrme results [BSkG2 functional by W. Ryssens]
- $R_{\rm Pb}(ab \ initio) = 5.534 \pm 0.030 \ {\rm fm}$ [Hu *et al.*, Nature Phys. **18** (2022) 10, 1196-1200]
- $R_{\rm Pb}(\rm LHC) = 5.568 \pm 0.058 \ \rm fm$ [Giacalone, Nijs, van der Schee, PRL **131** (2023) 20, 20]

Extracting the radial profile – Neutron skin


```
PREX II0.278 \pm 0.078 \text{ (exp.)} \pm 0.012 \text{ (theo.) fm}LHC0.217 \pm 0.058 \text{ (theo.) fm}
```

How about RHIC data? We can look at isobar collisions

X and Y are isobars

Ratios of observables (O) should be unity...

 $\frac{\mathcal{O}_{X+X}}{\mathcal{O}_{Y+Y}} \stackrel{?}{=} 1$

[Giacalone, Jia, Somà, PRC 104 (2021) 4, L041903]

... departure from unity mainly due to nuclear structure

Extremely precise measurements

Accessing the skin difference... Neutrons matter!

$$\rho(r) = \frac{\rho_0}{1 + \exp\left(\frac{r-R}{a}\right)}$$

- 96Zr, more diffuse due to larger N

- 96Ru, sharper surface

Ru+Ru systems are more compact...

Preliminary determinations from STAR data [Haojie Xu]

NB: Bayesian analysis is required for rigorous error validation

3 – Prospects

Improved constrains from more than one system

Use Xe+Xe data

PRELIMINARY RESULTS

Tension between PREX and CREX results?

[CREX collaboration, PRL **129** (2022) 4, 042501] [Reinhard, Roca-Maza, Nazarewicz, PRL **127** (2021) 23, 232501 – PRL **129** (2022) 23, 232501]

Case for running ⁴⁸Ca at LHC?

Isobar pair ⁴⁸Ca and ⁴⁰Ca proposed

"zero skin" of ⁴⁰Ca should enable precision extraction of ⁴⁸Ca skin

NLEFT calculations in progress... stay tuned

[Reed et al., PRC 109 (2024) 3, 035803]

Probing the EOS beyond the neutron skin

¹⁵⁰Nd

Emulator technology and global sensitivity analysis

[Zhang et al., arXiv:2408.13209]

Global sensitivity of RHIC/LHC data to pin down the effective interaction (and L)?

Probing the EOS beyond the symmetry energy?

How about correlations, three-body forces,?

Good cases for additional species @ LHC Run 5? Input is highly timely / wanted

SUMMARY

- Highly developed understanding of particle production in heavy-ion collisions
- Point-matter profile of ²⁰⁸Pb extracted from LHC data More from other systems soon

neutron

star

- Results consistent with low-energy determinations!
- Looking forward to future progress and collaborations

