The Equation of State of Nuclear Matter from Collective Flows in Intermediate Energy Heavy-Ion Collisions: An Update Dan Cozma

IFIN-HH Bucharest, Romania

NUSYM24, 13 September 2024

Overview

Motivation

Model Details

dcQMD – interaction parametrization Threshold effects Medium modification of cross-section Final state treatment

Study of EoS, Effective Masses, σ^* using Nucleonic Obs

Framework Impact of Different Observables Model Dependence Constraints

Perspectives

Summary & Conclusions

for details see D.C. arXiv:2407.16411

Rare probes in HIC

intermediate energy HIC collisions provide the opportunity to study three different aspects of the in-medium NN interaction: - in-medium cross-sections

- momentum dependence of optical potential
- density dependence of EoS of cold nuclear matter

a divide-and-conquer approach has been often employed

Dan Cozma (IFIN-HH, Bucharest) EoS of NM from Collective Flows in Intermediate Energy HICs NUSYM 24

Nucleonic Observables

extensive database of experimental data for nucleonic observables for intermediate energy HIC (FOPI, HADES, S π RIT, KaOS and others)

have not been used to their full potential

approach similar to that of Danielewicz et al. (Science 298, 2002), potential residual biases avoided by simultaneously determining in-medium cross-sections, optical potential and EoS

Nucleonic Observables

extensive database of experimental data for nucleonic observables for intermediate energy HIC (FOPI, HADES, $S\pi$ RIT, KaOS and others)

have not been used to their full potential

approach similar to that of Danielewicz et al. (Science 298, 2002), potential biases avoided by simultaneously determining in-medium cross-sections, optical potential and EoS

Dan Cozma (IFIN-HH, Bucharest) EoS of NM from Collective Flows in Intermediate Energy HICs NUSYM 24

dcQMD transport model: newest versions EPJA 57, 309 (2021) arXiv:2407.16411

an upgraded version of TuQMD, see H. Wolter et al.

Prog.Part.Nucl.Phys. 125, 103962 (2022)

Interaction (nucleonic component)

momentum dependent part: similar with that of J. Xu et al. PRC 91, 014611 (2015)

(see also C. Hartnack, J. Aichelin PRC 49, 2801 (1994))

used previously to test model dependence: flow ratio PRC 88, 44912 (2013)

pion multiplicity ratio PLB 753, 166 (2016)

independent part: extra term (vary L vs. K_{svm} and also J_0 vs. K independently)

Input		Parameters	
$ ho_0 ~[{ m fm}^{-3}]$	0.16	$\Lambda \; [{ m MeV}]$	708.001
$E_B [\text{MeV}]$	-16.0	$C_l \; [{ m MeV}]$	-13.183
m_s^*/m	0.70	C_u [MeV]	-140.405
$\delta^{*}_{n-p}~(ho_{0}, \beta=0.5)$	0.165	B [MeV]	137.305
$K_0 \; [{ m MeV}]$	245.0	σ	1.2516
$J_0 [{ m MeV}]$	-350.0	$\tilde{A}_l [{ m MeV}]$	-130.495
$\tilde{ ho} ~ [{ m fm}^{-3}]$	0.10	\tilde{A}_u [MeV]	-8.828
$S(\tilde{\rho}) \ [MeV]$	25.4	$D \; [{\rm MeV}]$	7.357

7

Threshold Effects (dcQMD)

- direct consequence of imposing (total) energy conservation in the medium

 $\sqrt{p_1^2 + m_1^2} + U(p_1) + \sqrt{p_2^2 + m_2^2} + U(p_2) = \sqrt{p'_1^2 + m'_1^2} + U(p'_1) + \sqrt{p'_2^2 + m'_2^2} + U(p'_2)$

- only few transport models below 1 AGeV:

RBUU: G. Ferini et al. PRL 97, 202301 (2006), RVUU: T. Song, C.M. Ko PRC 91, 014901 (2015); χBUU: Z. Zhang et al, PRC 98, 054614 (2018), AMD+JAM: N. Ikeno et al., PRC 108, 044601 (2023)

- required for thermodynamical consistency of the model

```
Z.Zhang et al, PRC 97, 014610 (2018)
```

- reactions: NN \leftrightarrow NN, NN \leftrightarrow NR, R \leftrightarrow N π (R \leftrightarrow N $\pi\pi$ not corrected)

- assumptions (dcQMD): - two-body collisions are part of N-body one

 in-medium two-body collisions modeled as a succession of bare (vacuum-like) collisions followed/preceded by energy exchanges with the fireball, while momentum is conserved

- reaction with highest probability: corresponds to the one which included the bare collision of highest probability

Example: elastic NN

$$\frac{\sigma^{(med)}}{d\Omega} = (2\pi)^4 \frac{m_1^* m_2^*}{k_i^* \sqrt{s_i^*}} |M_{fi}^{(med)}(\rho, \delta, \{\tau\})|^2 \frac{k_f^* m_{1'}^* m_{2'}^*}{\sqrt{s_f^*}}$$

$$|M_{fi}^{(med)}(\rho,\delta,\{\tau\})|^2 = \frac{1}{2}(|M_{fi}^{(vac)}(\tilde{s}_i)|^2 + |M_{fi}^{(vac)}(\tilde{s}_f)|^2) \blacktriangleleft \sqrt{\tilde{s}_{i,f}} - 2m_N = \sqrt{s_{i,f}^*} - \sqrt{s_{th}^*} + U_{i,f} - U_{th}$$

Introduced in TuQMD/dcQMD in DC, PLB 753, 166 (2016)

Collision Term

Elastic baryon-baryon collisions

-modified Cugnon parametrization to accurately describe elastic cross-sections at low impact energy (<100 MeV) but also total cross-sections above pion production threshold

J. Cugnon et al., NIMB 111, 215 (1996)

In-medium modification factor

- collision criterion based on effective masses determined using EoM (consistency with the $dt \rightarrow 0$ fm/c limit)

- in-medium modification of elastic cross-sections

 $\sigma^{med} = f(\rho, \delta,) \sigma^{vac}_{mod}$ $f(\rho, \delta) = \exp[\alpha \rho / \rho_0 + \beta_1 \delta \rho / \rho_0 + \beta_2 (\tau_1 + \tau_2) \delta \rho / \rho_0]$

 $\sigma_{_{mod}}^{_{vac}} - \text{flux and phase-space factors} \\ \text{computed using effective masses} \\$

B.A. Li et al. PRC72, 064611 (2005)

 $f(\rho, \delta)$ – accounts for medium modifications of transition matrix due to departure from the quasi-particle picture

C. Fuchs et al. PRC 64, 024003 (2001)

Resonance production: OBE model

9

S.Huber et al., NPA 573, 587 (1994)

Isospin dependent Pauli blocking (including a modified surface term)

Cluster multiplicities

- final state: MST algorithm all stable clusters ($\tau > 1$ ms) with A ≤ 15 , 23 additional A>15 (B,C,N,O) coalescence algorithm applied at local freeze-out time
- transport model parameters determined from a fit of v_1, v_2 and varxz experimental data δr =3.0-4.0 fm, δp =0.2-0.3 GeV/c

dashed curves: results with the coalescence model applied at final time (150 fm/c)

Nucleonic Observables

1) FOPI data set

- theoretical flow data away from mid-rapidity plagued by contamination from heavier clusters (most visible for proton $v_1(p_T)$ but also $v_1(y)$)

- exp data up 0.8 GeV/nucleon (impact of nucleon resonances on dynamics is small)

Label	Observables	Reference
FOPI1	$ v_1(y), y \leq 0.5$ for Z=1,2 clusters; M5 centrality	A. Andronic et al.
	$^{197}Au + ^{197}Au, ^{129}Xe + CsI, {}^{58}Ni + {}^{58}Ni (0.25, 0.40)$	PRC 67, 034907(2003)
FOPI2	$ v_1(y), y \le 0.5$ for p, d, A=3 and α clusters; $0.25 \le b_0 \le 0.45$	W. Reisdorf et al.
	$^{197}Au + ^{197}Au (0.25, 0.40, 0.60, 0.80)$	NPA 876, 1 (2012)
	$v_2(y), y \leq 0.5$ for p, d and α clusters; $0.25 \leq b_0 \leq 0.45$	
	$^{197}Au + ^{197}Au$ (0.15, 0.25, 0.40, 0.60, 0.80)	
	$v_2(p_T), y \le 0.4$ for p, d and t clusters; $0.25 \le b_0 \le 0.45$	
	$^{197}Au + ^{197}Au$ (0.15, 0.25, 0.40, 0.60, 0.80)	
varxz	varxz for p,d,t clusters; $b_0 \leq 0.15$	W. Reisdorf et al.
	40 Ca 40 Ca (0.4, 1.0), 58 Ni 58 Ni (0.15, 0.25), 96 Ru 96 Ru (0.4, 1.0)	NPA 848, 366 (2010)
	96 Zr+ 96 Zr (0.4), 129 Xe+CsI (0.15, 0.25)	
	$^{197}Au + ^{197}Au$ (0.15, 0.25, 0.4, 0.6, 0.8)	
spectra	longitudinal and transverse rapidity spectra for protons in $Z \leq 3$ clusters	W. Reisdorf et al.
	⁴⁰ Ca+ ⁴⁰ Ca (0.4), $b_0 \le 0.15$, $ y_{L,T}/y_P \le 1.25$	PRL 92, 232301 (2004)

results using above date set only: D.C. arXiv: 2407.16411

Nucleonic Observables

2) FOPI-LAND, ASYEOS – dedicated symmetry energy measurement

3) SPIRIT – dedicated effective masses and symmetry energy campaign

Label	Observables	Reference
FOPI-LAND	$v_2(p_T), 0.25 \le y \le 0.75 \text{ for } n, Z=1; b \le 7.5 \text{ fm}$	P. Russotto et al.
	$^{197}Au + ^{197}Au (0.40)$	PLB 697, 471 (2011)
ASYEOS	$v_2(p_T), 0.3 \le y \le 0.7$ for n,Z>0; b ≤ 7.5 fm	P. Russotto et al.
	$^{197}Au + ^{197}Au (0.40)$	PRC 94, 034608 (2016)
SPIRIT	varxz for p,d,t clusters; $b \leq 1.6$ fm	C.Y. Tsang et al.
	$^{112}Sn + ^{124}Sn \ (0.27)$	PLB 853, 138661 (2024)
	$v_1(p_T), v_1(y), v_2(y)$ for p in Z=1,2 clusters; $3.6 \le b \le 6.3$ fm	
	$^{132}Sn + ^{124}Sn \ (0.27)$	
	$v_1(p_T), v_1(y), v_2(y)$ for p in Z=1,2 clusters; $4.0 \le b \le 6.0$ fm	
	$^{108}\mathrm{Sn} + ^{112}\mathrm{Sn} \ (0.27)$	

Theoretical Simulations

Model parameters:

m*	[0.6, 0.9]	isoscalar effective mass
V_{∞}	[25, 125] MeV	isoscalar potential $p \rightarrow \infty$
K _o	[165, 355] MeV	compressibility modulus
α	[-0.4, 0.8]	in-medium $\sigma_{_{NN}}$, δ =0.0
∆m* _{np}	[-0.25,0.25] at (ρ=ρ ₀ , δ=0.5)	n-p effective mass diff.
L	[15, 145] MeV	slope symmetry energy
β1	[-0.5,3.5]	in-medium $\sigma_{_{NN}}$, δ <>0.0
β_2	[-1.5, 2.5]	σ _{nn} <>σ _{pp} , δ<>0.0

Enforced correlations: J_0 =-600+(K_0-165)*3.125 K_{sym} =-488+L*6.728 in units of [MeV]

<u>Input:</u> E/N(ρ₀)=-16.0 MeV S(0.62ρ₀)=25.5 MeV

properties of doubly-magic nuclei (binding energies, rms charge radii, single particle energies) Brown, PRL 111, 232502 (2013)

Model uncertainty: statistical+ systematical (δr =3.0-4.0 fm, δp =0.2-0.3 GeV/c) added in quadrature

Model emulator: sum of monomials of degree \leq 2; checked robustness LOO-CV method

Constraints

- exp data for isospin symmetric systems crucial for breaking degeneracy of isospin dep. and isospin indep. in-medium effects on cross-sections

Isospin asymmetry dependent σ_{NN}

 $\sigma^{med} = f(\rho, \delta,) \sigma^{vac}_{mod}$ $f(\rho, \delta) = \exp[\alpha \rho / \rho_0 + \beta_1 \delta \rho / \rho_0 + \beta_2 (\tau_1 + \tau_2) \delta \rho / \rho_0] \blacktriangleleft \text{ in-medium modification of the transition amplitude}$

- setting Δm_{nn}^* =-0.5 δ leads to an impact on isoscalar m* at 1 σ level

Relevance of Isospin Symmetric Systems

- isospin symmetric systems favor stronger in-medium reduction of cross-sections
- Pauli blocking algorithm less efficient for light system (~92% for AuAu vs. ~85% for CaCa)
- observed extra reduction $\sim 25\%$
- Z=1,2 $v_{_1}$ for NiNi crucial in breaking degeneracy between α and $\beta_{_1}$

Threshold Effect and Inelastic Channels

FOPI1: $v_1(y)$

- M5 centrality

- only data with $y/y_{P} < 0.5$ included in the fit

Full comparison to experimental data set: see D.C. arXiv:2407.16411

FOPI-LAND Experiment Revisited

- identical results for neutron-to-charged particles ratio (ASYEOS experiment)
- future ASYEOS2 measurement (2025) aims at determining n/p with greater accuracy

Combined Constraint

20

Pressure

Neutron star matter (δ =0.93)

Input: S(0.62p₀)=25.5 MeV

Perspectives

HIC with MII

Experimental side: ASYEOS (2025) v₂ⁿ/v₂^p: AuAu 0.25, 0.40, 0.80 GeV/nucleon

HADES (2025?) nucleonic flows, pions: AuAu 0.40, 0.60, 0.80 GeV/nucl

S π RIT (2024): nucleonic, pionic observables Xe+Sn 0.34 GeV/nucl

Theoretical side: - make use of lower p_{τ} part of pion spectra (S π RIT): non-resonant

pion production channels

22

- access higher densities: FOPI and HADES data above 1 GeV/nucleon: treat two-pion production channels consistently

- assesment of systematic uncertainty of transport model predictions (TMEP) Collision integral with MDI in a box

Summary & Conclusions

68% CL Result

 $m^{*}=0.70 \pm 0.02 \quad V_{\infty}=104 \pm 8 \text{ MeV}$ $\Delta m^{*}_{np}=(0.17 \pm 0.10)\delta$ $K_{0}=230 \pm 10 \text{ MeV}$ $L=63 \pm 12 \text{ MeV}$

Study of EoS, effective masses and σ* using nucleonic observables in AuAu collisions of intermediate impact energy (0.15-0.80 GeV/nucleon)

- in-medium effects on elastic collisions that depend on density, isospin asymmetry and isospin projection
- clusterization algorithm applied at local freeze-out time
- systematic uncertainty due to coalescence parameters;
- constraints extracted from FOPI experimental data for $v_1(y)$, $v_2(y)$, $v_2(p_T)$ and varxz

- model dependence: threshold effects and isospin asymmetry dependence of σ^* have significant impact

Comparison to a study of SE using pionic observables

full agreement (in contradiction with the situation ~10 years ago)

Perspectives: - remove imposed correlation between $L_0 \leftrightarrow J_0$ and $L \leftrightarrow K_{sym}$; allow for a variation of E/N(ρ_0) and S(0.1 fm⁻³).

- include explicit cluster degrees of freedom to be able to use experimental data sets to their full potential
- improve model to use more accurate part of pion spectra and access higher densities with HIC above 1.0 GeV/nucleon
- estimate model dependence (TMEP)

Probed Density (Free Protons)

- observables are functionals of the EoS

- sensitivity: functional derivatives w.r.t to EoS or d EoS/ dp, etc.

Dan Cozma (IFIN-HH, Bucharest) EoS of NM from Collective Flows in Intermediate Energy HICs NUSYM 24

EoS of Symmetric Matter

Symmetry Energy

Momentum dependent optical potential

DBHF: van Dalen et al., PRC 72, 065803 (2005) Empirical Lane: B.A. Li, PRC 69, 064602 (2004)

χFT:J.W. Holt et al., PRC 93, 064603 (2016)

In-medium σ_{NN} (T=0 MeV Fermi)

Dan Cozma (IFIN-HH, Bucharest) EoS of NM from Collective Flows in Intermediate Energy HICs NUSYM 24 28