Equation-of-state constraints from FOPI and ASY-EOS flow measurements

1

Equation-of-state constraints from FOPI and ASY-EOS flow measurements

- Bridging micro- & macroscopic collisions.
- Elliptic flow as a powerful observable to constrain the EoS.
- FOPI and ASY-EOS achievements in constraining the nuclear EoS.
- Origin of the elliptic flow in intermediate energies.
- Constraints on neutron star properties
- Perspectives and challenges.

1

Micro- & macroscopic collisions

Micro- & macroscopic collisions

ASSOCIATION

Micro- & macroscopic collisions

The nuclear EoS from experiments and astronomical observations

presented by Betty Tsang for Tommy Tsang at NuSym23

The equation-of-state of nuclear matter

EOS in thermodynamics pressure $P(\rho,T)$

$$
P = \rho^2 \frac{\partial E/A}{\partial \rho} \Big|_{T=const}
$$

Nuclear physics EOS

$$
\frac{E}{A} = E/A(\rho) \Big|_{T=0}
$$

Nuclear incompressibility K

$$
K = 9 \rho^2 \frac{\partial^2 E/A}{\partial^2 \rho} \Big|_{\rho=\rho_0}
$$

Asymmetry parameter $\delta = \frac{\rho_n - \rho_p}{\rho_n + \rho_p}$
Symmetry energy E_{sym}

$$
E(\rho, \delta) = E_{SNM}(\rho, \delta = 0) + \delta^2 E_{sym}(\rho) + O(\delta^4)
$$

mit

$$
E_{sym} = E_{sym^0} + \frac{L}{3} \left(\frac{\rho - \rho_0}{\rho_0} \right) + \frac{K_{sym}}{18} \left(\frac{\rho - \rho_0}{\rho_0} \right)^2 + ...
$$

Slope $L = 3\rho_0 \frac{\partial E_{sym}}{\partial \rho}$

Pressure vs density for symmetric nuclear matter

Extended Data Fig. 5 Huth et al., Nature 606

Measurements of FOPI

7
| HELMHOLTZ
| ASSOCIATION

 $\begin{picture}(20,10) \put(0,0){\line(1,0){10}} \put(15,0){\line(1,0){10}} \put(15,0){\line(1$

urements of FOPI

Elliptic flow method: FOPI and the incompressibility K₀

Elliptic flows of particles out of the participant region (« fireball »)

Elliptic flow method: FOPI and the incompressibility K₀

Elliptic flows of particles out of the participant region (« fireball »)

Elliptic flow method: FOPI and the incompressibility Ko

Elliptic flow

Elliptic flow method: FOPI and the incompressibility K₀

Elliptic flow

GSİ

Complete shape of $v_2(y_0)$: a new observable: $v_{2n} = |v_{20}| + |v_{22}|$ from fit $v_2(y_0) = v_{20} + v_{22} . y_0^2$

Elliptic flow method: FOPI and the incompressibility Ko

→ v_{2n}(E_{beam}) varies by a factor ≈1.6, >> measured uncertainty $(z1.1)$ → clearly favors a 'soft' EOS.

ASSOCIATION

GSI

A. Le Fèvre et al., NPA 945 (2016) 112–133

Elliptic flow method: FOPI and the incompressibility Ko

➜ v2n(Ebeam) varies by a factor ≈1.6, >> measured uncertainty $(z1.1)$ → clearly favors a 'soft' EOS.

ASSOCIATION

65)

Historical evidences of the need for momentum dependent interaction

• Subthreshold kaon data (KaoS) clearly advocate a **soft** EoS : « Hadronic Matter is Soft », Ch. Hartnack, H. Oeschler and J. Aichelin, PRL 96, 012302 (2006)

• Elliptic flow data can be explained by a **soft** EoS only if m.d.i. is included

Recent FOPI data analysis

Н, к=380 MeV

М, к=240 MeV

Tarasovicova et al., arXiv:2405.09889 (2024)

SMASH:

 s^{a}

 0.3

 $0.2₁$

 0.1

 Ω

 -0.1

 -0.2

 -0.3

 -0.4

r si

- Soft momentum-dependent interaction (SP) favoured.
- At the highest inc. energies, harder EoS required
- Weakness of this analysis : restricted to $Z=1$

SMASH 3.0, Au-Au

SP, K=215 MeV

 SP_{S} , κ =215 MeV

 0.4

MHOLTZ ASSOCIATION

 0.6

 0.8

1

 1.2

 1.4

 $-$ FOPI, Z=1

 0.2

 $E_{\text{kin}}/A = 0.4$ GeV

 $b = [5.5, 7.5]$ fm

 $Iy^{(0)}$ < 0.1

Recent FOPI data analysis

M.D. Cozma arXiv:2407.16411 (2024)

dcQMD:

- A comprehensive data analysis
- Optimisation on various parameters, assumptions, such as to narrow down constraints

An observable to quantify their respective contribution to it: transverse momentum modification induced projected on the direction of the final momentum:

GSI

$$
\langle \Delta P_t^o(t) \rangle = \langle \boldsymbol{\Delta P_t}(t) \cdot \frac{\boldsymbol{p}_{final}}{|\boldsymbol{p}_{final}|} \rangle
$$

ELMHOLTZ ASSOCIATION

A. Le Fèvre et al., PRC98 (2016) 034901

 $1₅$

Origin of elliptic flow: collisions versus mean field IQMD, Au+Au, mid-central

An observable to quantify their respective contribution to it: transverse momentum modification induced projected on the direction of the final momentum:

$$
\langle \Delta P_t^o(t) \rangle = \langle \Delta P_t(t) \cdot \frac{p_{final}}{|p_{final}|} \rangle
$$

SSOCIATION

From collisions: about an order of magnitude larger than from mean field, set fast in the overlap zone \Rightarrow this zone of violent collisions expands rapidly keeping its almond shape.

GSI

 $1₅$

Origin of elliptic flow: collisions versus mean field IQMD, Au+Au, mid-central

An observable to quantify their respective contribution to it: transverse momentum modification induced projected on the direction of the final momentum:

$$
\langle \Delta P_t^o(t) \rangle = \langle \Delta P_t(t) \cdot \frac{\mathbf{p}_{final}}{|\mathbf{p}_{final}|} \rangle
$$

From collisions: about an order of magnitude larger than from mean field, set fast in the overlap zone \Rightarrow this zone of violent collisions expands rapidly keeping its almond shape.

y (fm) From mean field: large out-of plane momentums transfer at the tips of the almond shape because here nucleons are between vacuum and the central densest zone \Rightarrow highest density gradient, largest force \Rightarrow move in ydirection out of the overlap zone.

GSI

A. Le Fèvre et al., PRC98 (2016) 034901

Origin of elliptic flow: collisions versus mean field IQMD, Au+Au, mid-central

An observable to quantify their respective contribution to it: transverse momentum modification induced projected on the direction of the final momentum:

$$
\langle \Delta P_t^o(t) \rangle = \langle \Delta P_t(t) \cdot \frac{p_{final}}{|p_{final}|} \rangle
$$

From collisions: about an order of magnitude larger than from mean field, set fast in the overlap zone \Rightarrow this zone of violent collisions expands rapidly keeping its almond shape.

From mean field: large out-of plane momentums transfer at the tips of the almond shape because here nucleons are between vacuum and the central densest zone \Rightarrow highest density gradient, largest force \Rightarrow move in ydirection out of the overlap zone.

Outer blue areas \Leftrightarrow attractive potential of the remnant, deceleration.

Inner blue area: inner density decreases and attraction by the moving spectators \Rightarrow transverse velocity decreases

A. Le Fèvre et al., PRC98 (2016) 034901

1.5 A.GeV, mid-rapidity, u_{10} > 0.4

Little difference between 0.6 AGeV and at 1.5 AGeV.

> **HELMHOLTZ ASSOCIATION**

GSI

Arnaud Le Fèvre - NuSym2024 - Caen

A. Le Fèvre et al., PRC98 (2016) 034901

Arnaud Le Fèvre - NuSym2024 - Caen

17

• The elliptic flow observed in the reactions around $E_{kin} \approx 1$ AGeV for protons at mid-rapidity $(|y_0| < 0.2)$ has two origins:

A. Le Fèvre et al., PRC98 (2016) 034901

 \cdot The elliptic flow observed in the reactions around $E_{kin} \approx 1$ AGeV for protons at mid-rapidity $(|y_0| < 0.2)$ has two origins:

❖ the **collisions** of participant nucleons with the **spectator matter**

A. Le Fèvre et al., PRC98 (2016) 034901

 \cdot The elliptic flow observed in the reactions around $E_{kin} \approx 1$ AGeV for protons at mid-rapidity $(|y_0| < 0.2)$ has two origins:

- ❖ the **collisions** of participant nucleons with the **spectator matter**
- ❖ the acceleration of **participants** in the **mean field**.

A. Le Fèvre et al., PRC98 (2016) 034901

 \cdot The elliptic flow observed in the reactions around $E_{kin} \approx 1$ AGeV for protons at mid-rapidity $(|y_0| < 0.2)$ has two origins:

- ❖ the **collisions** of participant nucleons with the **spectator matter**
- ❖ the acceleration of **participants** in the **mean field**.
- \cdot The collisional component of v_2 is almost independent of the EoS (due to Pauli blocking),

A. Le Fèvre et al., PRC98 (2016) 034901

• The elliptic flow observed in the reactions around $E_{kin} \approx 1$ AGeV for protons at mid-rapidity $(|y_0| \leq 0.2)$ has two origins:

- ❖ the **collisions** of participant nucleons with the **spectator matter**
- ❖ the acceleration of **participants** in the **mean field**.
- \cdot The collisional component of v_2 is almost independent of the EoS (due to Pauli blocking),

❖ The mean field contribution is for a hard EoS (HM) roughly twice as large as that for a soft EoS (SM).

A. Le Fèvre et al., PRC98 (2016) 034901

• The elliptic flow observed in the reactions around $E_{kin} \approx 1$ AGeV for protons at mid-rapidity $(|y_0| \leq 0.2)$ has two origins:

- ❖ the **collisions** of participant nucleons with the **spectator matter**
- ❖ the acceleration of **participants** in the **mean field**.
- \cdot The collisional component of v_2 is almost independent of the EoS (due to Pauli blocking),
- ❖ The mean field contribution is for a hard EoS (HM) roughly twice as large as that for a soft EoS (SM).

At largest out-of-plane emission $(0.6 \text{ AGeV} \rightarrow \text{max. stopping})$, for a soft EoS, collisional and mean field contributions are about equal,

A. Le Fèvre et al., PRC98 (2016) 034901

 \cdot The elliptic flow observed in the reactions around $E_{kin} \approx 1$ AGeV for protons at mid-rapidity $(|y_0| \leq 0.2)$ has two origins:

- ❖ the **collisions** of participant nucleons with the **spectator matter**
- ❖ the acceleration of **participants** in the **mean field**.
- \cdot The collisional component of v_2 is almost independent of the EoS (due to Pauli blocking),
- ❖ The mean field contribution is for a hard EoS (HM) roughly twice as large as that for a soft EoS (SM).

At largest out-of-plane emission $(0.6 \text{ AGeV} \rightarrow \text{max. stopping})$, for a soft EoS, collisional and mean field contributions are about equal,

❖ In all other cases the contribution of the mean field dominates.

A. Le Fèvre et al., PRC98 (2016) 034901

 \cdot The elliptic flow observed in the reactions around $E_{kin} \approx 1$ AGeV for protons at mid-rapidity $(|y_0| \leq 0.2)$ has two origins:

- ❖ the **collisions** of participant nucleons with the **spectator matter**
- ❖ the acceleration of **participants** in the **mean field**.
- \cdot The collisional component of v_2 is almost independent of the EoS (due to Pauli blocking),
- ❖ The mean field contribution is for a hard EoS (HM) roughly twice as large as that for a soft EoS (SM).
- At largest out-of-plane emission $(0.6 \text{ AGeV} \rightarrow \text{max. stopping})$, for a soft EoS, collisional and mean field contributions are about equal,
- ❖ In all other cases the contribution of the mean field dominates.
- ❖ Mean field out-of-plane flow comes from **nucleons close to the tips of fireball**: strongest density gradient in y-direction

A. Le Fèvre et al., PRC98 (2016) 034901

 \cdot The elliptic flow observed in the reactions around $E_{kin} \approx 1$ AGeV for protons at mid-rapidity $(|y_0| < 0.2)$ has two origins:

- ❖ the **collisions** of participant nucleons with the **spectator matter**
- ❖ the acceleration of **participants** in the **mean field**.
- \cdot The collisional component of v_2 is almost independent of the EoS (due to Pauli blocking),
- ❖ The mean field contribution is for a hard EoS (HM) roughly twice as large as that for a soft EoS (SM).
- At largest out-of-plane emission $(0.6 \text{ AGeV} \rightarrow \text{max. stopping})$, for a soft EoS, collisional and mean field contributions are about equal,
- ❖ In all other cases the contribution of the mean field dominates.
- ❖ Mean field out-of-plane flow comes from **nucleons close to the tips of fireball**: strongest density gradient in y-direction
- ❖ This effect is amplified if one selects particles with a high transverse velocity.

A. Le Fèvre et al., PRC98 (2016) 034901

Elliptic flow: densities probed by FOPI

- ‣ In the QMD model, the EOS must be correct over a broad range of densities in order to predict the observed elliptic flow.
- ‣ The density range, relevant to the EOS evidenced by the FOPI Collaboration, spans in the range $\rho \approx (1 - 3) \rho_0$.

A. Le Fèvre et al., NPA 945 (2016) 112–133

Elliptic flow method: FOPI EoS constraints

 K_0 as from FOPI flow data *[A. Le Fèvre et al., NPA945(2016)112-133] [Y. Wang et al., PLB-778(2018)207-212] [M.D. Cozma, arXiv:2407.16411v2 - July 2024]* $dcQMD \rightarrow K_0 = 230^{+9}_{-11}$ *MeV* $IQMD - > K_0 = 190 \pm 30$ *MeV*

GSI

Elliptic flow and symmetry energy constraint with ASY-EOS (I)

Elliptic flow and symmetry energy constraint with ASY-EOS (I)

ASSOCIATION

Elliptic flow and symmetry energy constraint with ASY-EOS (I)

Differential elliptic flow $v₂$ of n/p **UrQMD*** (Q. Li et al.) predicts:

"hard" E_{sym}(ρ)

protons unchanged

"soft" Esym(ρ)

neutron and proton flow inverted

Towards model invariance:

tested stability with different models:

- ➢ soft vs. hard EoS: **190** < **K0** < **260 MeV**
- \triangleright density dependance of $\sigma_{NN,elastic}$
- \triangleright asymmetry dependance of $\sigma_{NN,elastic}$
- \triangleright optical potential

 \triangleright momentum dependence of isovector potential M.D. Cozma et al.,PRC 88, 044912 (2013),

arXiv:2407.16411v2 (2024)

P. Russotto et al., PLB 267 (2010)

Y. Wang et al.,PRC 89, 044603 (2014)

 22

Elliptic flow method: high densities ASY-EOS

systematic errors corrected: $y = 0.72 \pm 0.19$

GSI

- slope parameter: L = 72 ± 13 MeV, $E_{sym}(\rho_0)$ = 34 MeV
- slope parameter: L = 63 ± 11 MeV, $E_{sym}(\rho_0) = 31$ MeV

ASY-EOS: neutron vs charged-particle elliptic flow ratio

sensitivity to density

density probed extends to 2.5 ρ_0

Synthesis: FOPI and ASY-EOS (I) EoS

Synthesis: FOPI and ASY-EOS (I) EoS

FOPI - ASY-EOS EoS constraints and neutron stars

Reed Essick at NuSym22 in Catania

R_{1.4}P_{sat}-1/4 = 9.5 ± 0.5 => R_{1.4} = 12.9 ± 0.6 km ± 0.7 km (68%) (stat.) (correl.)

for ASY-EOS: Russotto+, PRC 94, 034608 (2016) for correlation: Lattimer, arXiv:2308.08001

resic

Combining heavy-ion experiments, astrophysical observations, and nuclear theory

Article

Nature 606, 276 (2022)

Constraining neutron-star matter with microscopic and macroscopic collisions

 11 authors from nuclear theory, heavy ion reactions, and astrophysics

Bayesian inference as in Dietrich+, Science 370, 1450 (2020)

χEFT prior + HIC + astro

ASSOCIATION

neutron star matter

χEFT up to 1.5 $ρ_0$

Arnaud Le Fèvre - NuSym2024 - Caen 29

Constraints from heavy-ion collisions χEFT prior + HIC + astro

Huth, Pang et al., Nature 606 (2022)

HELMHOLTZ ASSOCIATION

Constraints from heavy-ion collisions χEFT prior + HIC + astro

Huth, Pang et al., Nature 606 (2022)

HELMHOLTZ ASSOCIATION **Influence of the choice of the prior**

nature astronomy

Article

https://doi.org/10.1038/s41550-023-02161-z

Determination of the equation of state from nuclear experiments and neutron star observations

Received: 22 February 2023

Accepted: 6 November 2023

Published online: 05 January 2024

Chun Yuen Tsang^{1,2}, ManYee Betty Tsang $\mathbf{D}^{1,2} \boxtimes$, William G. Lynch^{1,2}, Rohit Kumar¹ & Charles J. Horowitz $\mathbf{D}^{1,3}$

Influence of the choice of the prior

Perspectives: ASY-EOS II 2025: ASY-EOS II at R3B/FAIR (proposal: arXiv:2105.09233)

Scheduled in March 2025 at SIS18 (GSI)

GSĬ

Perpectives: ASY-EOS II

Perspectives: Towards higher densities and precision

Symmetric nuclear matter EoS

- Constrained so far up to about $3p_0$ at GSI
- Above $3p_0$, AGS data have presumably constrained it up to around $3-7p_0$
- … using the proton **directed flow** (F or v1). But inconsistencies with experimental proton **elliptic flow** data comparing with FOPI data (up to 1.5A GeV) => **should be remeasured at FAIR** (with **heavy systems** to reach higher densities).
- Above 1A GeV, elliptic flow still sensitive on K0, up to around 3A GeV. **Directed flow is more constraining at higher incident energies.**

Perspectives @FAIR (CBM, HADES, R3B)

Present situation: Above $\,\approx 2\rho_0^{}$, the posterior distribution of the pressure in a neutron star is primarily driven by astronomical observations.

Reason: reliable HIC data (symmetry energy) isn't available at higher densities.

Perspectives @FAIR (CBM, HADES, R3B)

Present situation: Above $\,\approx 2\rho_0^{}$, the posterior distribution of the pressure in a neutron star is primarily driven by astronomical observations.

Reason: reliable HIC data (symmetry energy) isn't available at higher densities.

Perspectives: transport modelling improvements

Wishful thinking towards THE money plot (needed by external communities and scholar textbook)

A common HIC EoS with well-defined errors consistent with all transport (and hydro) codes UrGiQMBVU3FD…

Progress in Particle and Nuclear Physics Volume 134, January 2024, 104080

Review

Dense nuclear matter equation of state from heavy-ion collisions

ASSOCIATION

Agnieszka Sorensen¹ 2 \otimes , Kshitij Agarwal², Kyle W. Brown³⁴, Zbigniew Chajęcki⁵, Paweł Danielewicz ³⁶, Christian Drischler⁷, Stefano Gandolfi⁸, Jeremy W. Holt⁹¹⁰, Matthias Kaminski ¹¹, Che-Ming Ko^{9 10}, Rohit Kumar³, Bao-An Li¹², William G. Lynch³⁶, Alan B. McIntosh ¹⁰, William G. Newton ¹², Scott Pratt ^{3 6}, Oleh Savchuk ^{3 13}, Maria Stefaniak ^{14 15}, Ingo Tews ⁸, ManYee Betty Tsang ^{3 6}, Ramona Vogt ^{16 17}, Hermann Wolter ¹⁸, Hanna Zbroszczyk ¹⁹, Navid Abbasi ²⁰, Jöra Aichelin ^{21 22}, Anton Andronic ²³, Steffen A. Bass ²⁴, Francesco Becattini ^{25 26} David Blaschke²⁷ 28 ²⁹, Marcus Bleicher ^{30 31}, Christoph Blume³², Elena Bratkovskaya^{15 30 31}, B. Alex Brown³⁶, David A. Brown³³, Alberto Camaiani²⁵ 26, Giovanni Casini²⁶, Katering Chatzijoannou 34 35, Abdeloughad Chbihi 36, Maria Colonna 37, Mircea Dan Cozma 38, Veronica Dexheimer³⁹, Xin Dong⁴⁰, Travis Dore⁴¹, Lipei Du⁴², José A. Dueñas⁴³, Hannah Elfner ^{15 30 22 31}, Wojciech Florkowski⁴⁴, Yuki Fujimoto¹, Richard J. Furnstahl¹⁴, Alexandra Gade³⁶, Tetyana Galatyuk¹⁵⁴⁵, Charles Gale⁴², Frank Geurts⁴⁶, Fabiana Gramegna⁶⁸ , Sašo Grozdanov ^{47 48}, Kris Hagel ¹⁰, Steven P. Harris ¹, Wick Haxton ^{49 40}, Ulrich Heinz ¹⁴, Michal P. Heller ⁵⁰, Or Hen⁵¹, Heiko Hergert³⁶, Norbert Herrmann⁵², Huan Zhong Huang⁵³, Xu-Guang Huang 54 55 56, Natsumi Ikeno 57 10, Gabriele Inghirami 15, Jakub Jankowski 27, Jiangyong Jia^{58 59}, José C. Jiménez ⁶⁰, Joseph Kapusta ⁶¹, Behruz Kardan³², Iurii Karpenko ⁶², Declan Keane³⁹, Dmitri Kharzeev^{63 59}, Andrej Kugler⁶⁴, Arnaud Le Fèvre¹⁵, Dean Lee³⁶, Hong Liu⁶⁵, Michael A. Lisa ¹⁴, William J. Llope ⁶⁶, Ivano Lombardo ⁶⁷, Manuel Lorenz³², Tommaso Marchi ⁶⁸, Larry McLerran¹, Ulrich Mosel ⁶⁹⁷⁰, Anton Motornenko²², Berndt Müller²⁴, Paolo Napolitani⁷¹, Joseph B. Natowitz¹⁰, Witold Nazarewicz³⁶, Jorge Noronha⁷², Jacquelyn Noronha-Hostler⁷², Grażyna Odyniec⁴⁰, Panagiota Papakonstantinou⁷³, Zuzana Paulínyová ⁷⁴, Jorge Piekarewicz ⁷⁵, Robert D. Pisarski ⁵⁹, Christopher Plumberg ⁷⁶, Madappa Prakash⁷, Jørgen Randrup⁴⁰, Claudia Ratti⁷⁷, Peter Rau¹, Sanjay Reddy¹, Hans-Rudolf Schmidt²¹⁵, Paolo Russotto³⁷, Radoslaw Ryblewski⁷⁸, Andreas Schäfer⁷⁹, Björn Schenke⁵⁹, Srimoyee Sen⁸⁰, Peter Senger⁸¹, Richard Seto⁸², Chun Shen⁶⁶⁸³, Bradley Sherrill³⁶, Mayank Singh⁶¹, Vladimir Skokov⁸⁴⁸³, Michał Spaliński⁸⁵⁸⁶, Jan Steinheimer²², Mikhail Stephanov⁸⁷, Joachim Stroth^{32 15}, Christian Sturm¹⁵, Kai-Jia Sun⁸⁸, Aihong Tang₅₉, Giorgio Torrieri^{89 90}, Wolfgang Trautmann¹⁵, Giuseppe Verde⁹¹, Volodymyr Vovchenko⁷⁷, Ryoichi Wada¹⁰, Fuqiang Wang⁹², Gang Wang⁵³, Klaus Werner²¹, Nu Xu ⁴⁰, Zhangbu Xu ⁵⁹, Ho-Ung Yee ⁸⁷, Sherry Yennello ^{10 9 93}, Yi Yin ⁹⁴

Perspectives: transport modelling improvements

Wishful thinking towards THE money plot (needed by external communities and scholar textbook)

A common HIC EoS with well-defined errors consistent with all transport (and hydro) codes UrGiQMBVU3FD…

In line with the international Transport Model Evaluation @ 270A MeV | Project (TMEP)

Perspectives: experimental programme

A growing multi-messenger era for the next 15+ years…

ASSOCIATION

Voir

• In the past decade:

GSI & FAIR

G

HELMHOLTZ
| ASSOCIATION

• In the past decade:

• **Flow** is a powerful observable to determine the nuclear EoS, including the asymmetry energy. SIS18 energies allow to probe **a broad range of densities**.

• In the past decade:

- **Flow** is a powerful observable to determine the nuclear EoS, including the asymmetry energy. SIS18 energies allow to probe **a broad range of densities**.
- Combining FOPI & ASY-EOS (I) constraints allowed to predict a density dependance of the **pressure in a neutron star**, up to $\approx 1.5\rho_0$, with a **challenging accuracy**, compatible with recent astrophysical measurements deduced from gravitational waves and pulsar observations.

• In the past decade:

- **Flow** is a powerful observable to determine the nuclear EoS, including the asymmetry energy. SIS18 energies allow to probe **a broad range of densities**.
- Combining FOPI & ASY-EOS (I) constraints allowed to predict a density dependance of the **pressure in a neutron star**, up to $\approx 1.5\rho_0$, with a **challenging accuracy**, compatible with recent astrophysical measurements deduced from gravitational waves and pulsar observations.
- Fundamental: determine the **profile of densities that are probed** by our observables.

• In the past decade:

- **Flow** is a powerful observable to determine the nuclear EoS, including the asymmetry energy. SIS18 energies allow to probe **a broad range of densities**.
- Combining FOPI & ASY-EOS (I) constraints allowed to predict a density dependance of the **pressure in a neutron star**, up to $\approx 1.5\rho_0$, with a **challenging accuracy**, compatible with recent astrophysical measurements deduced from gravitational waves and pulsar observations.
- Fundamental: determine the **profile of densities that are probed** by our observables.
- **• In the near future:**

• In the past decade:

- **Flow** is a powerful observable to determine the nuclear EoS, including the asymmetry energy. SIS18 energies allow to probe **a broad range of densities**.
- Combining FOPI & ASY-EOS (I) constraints allowed to predict a density dependance of the **pressure in a neutron star**, up to $\approx 1.5\rho_0$, with a **challenging accuracy**, compatible with recent astrophysical measurements deduced from gravitational waves and pulsar observations.
- Fundamental: determine the **profile of densities that are probed** by our observables.

• In the near future:

• **The second ASY-EOS (II) experiment** is planned at GSI in March 2025 at higher incident energy and with better accuracy to further constrain the symmetry energy up to $\approx 2.5\rho_0$

• In the past decade:

- **Flow** is a powerful observable to determine the nuclear EoS, including the asymmetry energy. SIS18 energies allow to probe **a broad range of densities**.
- Combining FOPI & ASY-EOS (I) constraints allowed to predict a density dependance of the **pressure in a neutron star**, up to $\approx 1.5\rho_0$, with a **challenging accuracy**, compatible with recent astrophysical measurements deduced from gravitational waves and pulsar observations.
- Fundamental: determine the **profile of densities that are probed** by our observables.

- **The second ASY-EOS (II) experiment** is planned at GSI in March 2025 at higher incident energy and with better accuracy to further constrain the symmetry energy up to $\approx 2.5\rho_0$
- **Question our error bars**: reliable model dependencies and corrections due to determinations of K_0 and L .

• In the past decade:

- **Flow** is a powerful observable to determine the nuclear EoS, including the asymmetry energy. SIS18 energies allow to probe **a broad range of densities**.
- Combining FOPI & ASY-EOS (I) constraints allowed to predict a density dependance of the **pressure in a neutron star**, up to $\approx 1.5\rho_0$, with a **challenging accuracy**, compatible with recent astrophysical measurements deduced from gravitational waves and pulsar observations.
- Fundamental: determine the **profile of densities that are probed** by our observables.

- **The second ASY-EOS (II) experiment** is planned at GSI in March 2025 at higher incident energy and with better accuracy to further constrain the symmetry energy up to $\approx 2.5\rho_0$
- **Question our error bars**: reliable model dependencies and corrections due to determinations of K_0 and L .
- Improvements and breakthroughs in **transport model simulations and nuclear theory**.

• In the past decade:

- **Flow** is a powerful observable to determine the nuclear EoS, including the asymmetry energy. SIS18 energies allow to probe **a broad range of densities**.
- Combining FOPI & ASY-EOS (I) constraints allowed to predict a density dependance of the **pressure in a neutron star**, up to $\approx 1.5\rho_0$, with a **challenging accuracy**, compatible with recent astrophysical measurements deduced from gravitational waves and pulsar observations.
- Fundamental: determine the **profile of densities that are probed** by our observables.

- **The second ASY-EOS (II) experiment** is planned at GSI in March 2025 at higher incident energy and with better accuracy to further constrain the symmetry energy up to $\approx 2.5\rho_0$
- **Question our error bars**: reliable model dependencies and corrections due to determinations of K_0 and L .
- Improvements and breakthroughs in **transport model simulations and nuclear theory**.
- New neutron star measurements (O4, O5, …) & update of **symmetric matter constraints** from CBM, HADES, BES, NICA…

• In the past decade:

- **Flow** is a powerful observable to determine the nuclear EoS, including the asymmetry energy. SIS18 energies allow to probe **a broad range of densities**.
- Combining FOPI & ASY-EOS (I) constraints allowed to predict a density dependance of the **pressure in a neutron star**, up to $\approx 1.5\rho_0$, with a **challenging accuracy**, compatible with recent astrophysical measurements deduced from gravitational waves and pulsar observations.
- Fundamental: determine the **profile of densities that are probed** by our observables.

- **The second ASY-EOS (II) experiment** is planned at GSI in March 2025 at higher incident energy and with better accuracy to further constrain the symmetry energy up to $\approx 2.5\rho_0$
- **Question our error bars**: reliable model dependencies and corrections due to determinations of K_0 and L .
- Improvements and breakthroughs in **transport model simulations and nuclear theory**.
- New neutron star measurements (O4, O5, …) & update of **symmetric matter constraints** from CBM, HADES, BES, NICA…
- **Improvement of symmetry energy constraints** around $1.5 3\rho_0$ from ASY-EOS@SIS, CBM/HADES/R3B@FAIR, FRIB, FRIB400, RIKEN,...

• In the past decade:

- **Flow** is a powerful observable to determine the nuclear EoS, including the asymmetry energy. SIS18 energies allow to probe **a broad range of densities**.
- Combining FOPI & ASY-EOS (I) constraints allowed to predict a density dependance of the **pressure in a neutron star**, up to $\approx 1.5\rho_0$, with a **challenging accuracy**, compatible with recent astrophysical measurements deduced from gravitational waves and pulsar observations.
- Fundamental: determine the **profile of densities that are probed** by our observables.

- **The second ASY-EOS (II) experiment** is planned at GSI in March 2025 at higher incident energy and with better accuracy to further constrain the symmetry energy up to $\approx 2.5\rho_0$
- **Question our error bars**: reliable model dependencies and corrections due to determinations of K_0 and L .
- Improvements and breakthroughs in **transport model simulations and nuclear theory**.
- New neutron star measurements (O4, O5, …) & update of **symmetric matter constraints** from CBM, HADES, BES, NICA…
- **Improvement of symmetry energy constraints** around $1.5 3\rho_0$ from ASY-EOS@SIS, CBM/HADES/R3B@FAIR, FRIB, FRIB400, RIKEN,...
- NEW facilities (FRIB400?, FAIR), NEW experiments and NEW theories to explore the golden era of neutron star physics with HIC's.

