Plans for symmetry energy research within the INDRA-FAZIA collaborations

http://fazia.in2p3.fr

Nicolas Le Neindre for the INDRA & FAZIA Collaborations Université de Caen Normandie, ENSICAEN, CNRS/IN2P3, LPC Caen UMR6534, F-14000 Caen, France NUSYM 2024, XIIth International Symposium on Nuclear Symmetry Energy, September 9th-13th 2024, Caen

INTRODUCTION

In heavy ions collisions, during peripheral reactions, projectile and target interact and exchange nucleons. Isospin equilibration: projectile and target with different neutron to proton ratio equilibrate their N/Z over time. Different interactions, leading to different EoS, produce different equilibration path.

Any experimental measurements of the isospin equilibration rate would constraint the EoS -> See C. Ciampi, A. Jedele, S. Mallik, R. Bougault, A. Le Fèvre and many other talks

Critical role of clustering at low density

From Diego Gruyer IWM 2024

What is FAZIA?

FAZIA at GANIL: 12 blocks 1,8°-13,5° 192 telescopes Si-Si-CsI(Tl) Z identification 1-54 A resolution Z~20 PSA & Z~25 ΔE-E

INDRA & FAZIA at GANIL in 2024

INDRA:

12 rings 14°-176° 240 CsI(TI) 96 Si detectors Z identification 1-54 A resolution Z=1-4 CsI, Z=1-6 Si-CsI

Why INDRA and FAZIA for symmetry energy research?

- Very good isotopic identification on a large scale
- Large angular isotopic resolution with INDRA upgrade ->45°
- Good acceptance and low thresholds -> good event characterization
- 192 telescopes for FAZIA and 240 for INDRA -> high multiplicity
- Full digital electronics, low dead time and high acquisition rate

INDRA upgrade

So far, what have been done? INDRA-FAZIA at GANIL

- E789 2019 : ⁵⁸⁻⁶⁴Ni + ⁵⁸⁻⁶⁴Ni @ 32 & 52 A MeV
- E818 2022 : ³⁶Ar + ⁵⁸Ni @ 74 A MeV & ⁵⁸Ni + ⁵⁸Ni @ 74 A MeV
 To come soon (2025)
- E884 2025 : ⁷⁰Zn + ²⁷Al,⁷⁰Zn,²⁰⁸Pb @ 35 A MeV

E789: Studies on isospin transport ratio with 64-58Ni+64-58Ni @ 32 & 52 A MeV

- C. Ciampi et al. Physical Review C 106 (2022) 024603
- C. Ciampi et al. Physical Review C 108 (2023) 054611

τ^{52MeV/nucl.}

0.6

0.8

b¹_{red}

Contact time extraction via comparison with transport models (AMD). Longer contact time for break-up respect to QP evaporation. +time = more isospin equilibration

© Caterina Ciampi

© Swagata Mallik

Next INDRA-FAZIA campaign at GANIL E884 - 2025 :⁷⁰Zn + ²⁷Al,⁷⁰Zn,²⁰⁸Pb @ 35 A MeV "Impact of projectile-target size asymmetry on the isospin equilibration rate extracted From guasi projectile break-up reactions."

We have seen in previous analyses how isospin transport evolves according to QP decay (evaporation vs break-up) see C. Ciampi et al. What is the role of the target?

Target as an isospin reservoir and size influence on QP evolution.

Next INDRA-FAZIA campaign at GANIL E884 - 2025 :⁷⁰Zn + ²⁷Al,⁷⁰Zn,²⁰⁸Pb @ 35 A MeV "Impact of projectile-target size asymmetry on the isospin equilibration rate extracted From quasi projectile break-up reactions."

A. Rodriguez-Manso et al. PRC 95 (2017) 044604

K. Brown et al. PRC 87 (2013) 061601

Experimental campaigns at GANIL: INDRA+FAZIA

In addition to symmetry energy studies Measurement of the ¹²C Hoyle state radius via double-excitation inelastic scattering

Diego Gruver* Université de Caen Normandie, ENSICAEN, CNRS/IN2P3, LPC Caen UMR6534, F-14000 Caen, France

Daniele Dell'Aquila Dipartimento di Fisica, Università degli Studi di Napoli 'Federico II', Naples, Italy (INDRA and FAZIA Collaborations)

The detailed properties of the ${}^{12}C$ second 0^+ excited state, known as the Hoyle state, are both a challenge for nuclear structure theory and have a key role in the synthesis of the elements. We propose to measure the mean matter radius of this state by analyzing the diffraction structure of single- and double-excitation in ${}^{12}C+{}^{12}C$ inelastic scattering at 105 MeV beam energy. The experimental setup will consist in the FAZIA detector.

In 2022 during E818 campaign, we had calibration beams ¹²C at 8,75 and 13,75 A MeV. After having completed calibrations, during 6 hours we put a C target . For fun...

© Diego Gruyer

© Diego Gruyer

High energies - high density aspects of nuclear EoS

45

45

47

49

52

53

56

57

64

64

65

HIC (asym)

nuclear

properties

neutron stars (NS)

density n_B/n_0

2

Dense Nuclear Matter Equation of State from Heavy-Ion Collisions

Agnieszka Sorensen¹, Kshitij Agarwal², Kyle W. Brown^{3,4}, Zbigniew Chajecki⁵, Paweł Danielewicz^{3,6}, Christian Drischler⁷, Stefano Gandolfi⁸, Jeremy W, Holt^{9,10}, Matthias Kaminski¹¹, Che-Ming Ko^{9,10}, Rohit Kumar³, Bao-An Li¹², William G, Lvnch^{3,6}, Alan B. McIntosh¹⁰, William G. Newton¹², Scott Pratt^{3,6}, Oleh Savchuk^{3,13}, Maria Stefaniak¹⁴, Ingo Tews⁸, ManYee Betty Tsang^{3,6}, Ramona Vogt^{15,16}, Hermann Wolter¹⁷, Hanna Zbroszczyk¹⁸

Endorsing authors:

Navid Abbasi¹⁹, Jörg Aichelin^{20,21}, Anton Andronic²², Steffen A. Bass²³, Francesco Becattini^{24,25}, David Blaschke^{26,27,28}, Marcus Bleicher^{29,30}, Christoph Blume³¹, Elena Bratkovskaya^{14,29,30}, B. Alex Brown^{3,6}, David A. Brown³², Alberto Camaiani³³, Giovanni Casini²⁵ Katerina Chatziioannou^{34,35}, Abdelouahad Chbihi³⁶, Maria Colonna³⁷, Mircea Dan Cozma³⁸ Veronica Dexheimer³⁹, Xin Dong⁴⁰, Travis Dore⁴¹, Lipei Du⁴², José A. Dueñas⁴³ Hannah Elfner^{14,21,29,30}, Wojciech Florkowski⁴⁴, Yuki Fujimoto¹, Richard J. Furnstahl⁴⁵ Alexandra Gade^{3,6}, Tetvana Galatvuk^{14,46}, Charles Gale⁴², Frank Geurts⁴⁷, Saso Grozdanov^{48,49}, Kris Hagel¹⁰, Steven P. Harris¹, Wick Haxton^{40,50}, Ulrich Heinz⁴⁵ Michal P. Heller⁵¹, Or Hen⁵², Heiko Hergert^{3,6}, Norbert Herrmann⁵³, Huan Zhong Huang⁵⁴ Xu-Guang Huang^{55,56,57}, Natsumi Ikeno^{10,58}, Gabriele Inghirami¹⁴, Jakub Jankowski²⁶ Jiangvong Jia^{59,60}, José C. Jiménez⁶¹, Joseph Kapusta⁶², Behruz Kardan³¹, Iurii Karpenko⁶³ Declan Keane³⁹, Dmitri Kharzeev^{60,64}, Andrej Kugler⁶⁵, Arnaud Le Fèvre¹⁴, Dean Lee^{3,6}, Hong Liu⁶⁶, Michael A. Lisa⁴⁵, William J. Llope⁶⁷, Ivano Lombardo⁶⁸, Manuel Lorenz³¹ Tommaso Marchi⁶⁹, Larry McLerran¹, Ulrich Mosel^{70,71}, Berndt Müller²³, Paolo Napolitani⁷², Joseph B. Natowitz¹⁰, Witold Nazarewicz^{3,6}, Jorge Noronha⁷³, Jacquelyn Noronha-Hostler⁷³ Grażyna Odyniec⁴⁰, Panagiota Papakonstantinou⁷⁴, Zuzana Paulínyová⁷⁵, Jorge Piekarewicz⁷⁶, Robert D. Pisarski⁶⁰, Christopher Plumberg⁷⁷, Madappa Prakash⁷, Jørgen Randrup⁴⁰, Claudia Ratti⁷⁸, Peter Rau¹, Sanjav Reddv¹, Hans-Rudolf Schmidt^{2,14}, Paolo Russotto³⁷ Radoslaw Ryblewski⁷⁹, Andreas Schäfer⁸⁰, Björn Schenke⁶⁰, Srimovee Sen⁸¹, Peter Senger⁸² Richard Seto⁸³, Chun Shen^{67,84}, Bradley Sherrill^{3,6}, Mayank Singh⁶², Vladimir Skokov^{84,85}, Michał Spaliński^{86,87}, Jan Steinheimer²¹, Mikhail Stephanov⁸⁸, Joachim Stroth^{14,31}, Christian Sturm¹⁴, Kai-Jia Sun⁸⁹, Aihong Tang⁶⁰, Giorgio Torrieri^{90,91}, Wolfgang Trautmann¹⁴ Giuseppe Verde⁹², Volodymyr Vovchenko⁷⁸, Ryoichi Wada¹⁰, Fuqiang Wang⁹³, Gang Wang⁵⁴, Klaus Werner²⁰, Nu Xu⁴⁰, Zhangbu Xu⁶⁰, Ho-Ung Yee⁸⁸, Sherry Yennello^{10,94,95}, Yi Yin⁹⁶

¹Institute for Nuclear Theory, University of Washington, Seattle, WA 98195, USA, ² Physikalisches Institut, Eberhard Karls Universität Tübingen, D-72076 Tübingen, Germany. ³ Facility for Rarc Isotope Beams, Michigan State University, East Lansing, MI 48824, USA. ⁴Department of Chemistry, Michigan State University, East Lansing, MI 48824, USA, ⁵Department of Physics, Western Michigan University, Kalamazoo, MI 49008, USA, ⁶Department of Physics and Astronomy, Michigan State University, East Lansing, Michigan 48824, USA ⁷Department of Physics and Astronomy, Ohio University, Athens, OH 45701, USA, ⁸ Theoretical Division, Los Alamos National Laboratory, Los Alamos, NM 87545, USA ⁹Department of Physics and Astronomy, Texas A&M University, College Station, TX 77843, USA, ¹⁰Cyclotron Institute, Texas A&M University, College Station, TX 77843, USA, ¹¹Department of Physics and Astronomy, University of Alabama, Tuscaloosa, AL 35487, USA, ¹²Texas A&M University-Commerce, Commerce, TX 75429, USA, ¹³Bogolyubov Institute for Theoretical Physics, 03680 Kyiv, Ukraine, ¹⁴GSI Helmholtz Centre for Heavy-ion Research, 64291 Darmstadt, Germany,

HIC (sym)

1

5

High E radioactive beams, for larger p, T & isospin

3

NS mergers

- VI. Exploratory directions
- A. Dense nuclear matter EOS meeting extreme gravity and dark matter in supermassive neutron stars

B. Nuclear EOS with reduced spatial dimensions

High energies - high density aspects of nuclear EoS

American set-up foreseen so far for an approved experiment at FRIB (end 2025?)

^{56,70}Ni+^{58,64}Ni @ 175 A MeV

Possible FAZIA involvements at FRIB

- Bringing some FAZIA blocks to join/complete the set-up?
- Imagine our own set-up? Of course with local support.
- Lol for PAC3 at FRIB?
- => Everything is open, let's discuss and collaborate.

Building additional FAZIA blocks for RAON 2024-....

Two production methods: Separation on line (ISOL) and in flight fragmentation (IF):

- ISOL: ²³⁸U fission by proton beam at 70 MeV
- IF: ²³⁸U beam at 200 A MeV (8,3p μA)

Final project associates a large variety of radioactive beams with a big range of beam energies. For example ¹³²Sn at 250 A MeV with 10⁹ pps! But not before 2030 after building SCL2!

New developments for the future

FAZIA Front End Electronics update in South Korea

IJCLab Orsay Naples

New prototypes FAZIA FEE card (FPGA Virtex 5->Kintex 7)

One Complex Programmable Logic Device chip (VHDL) makes two FPGAs New clock generator (old one no more available) 250->500 MHz

Courtesy of Minjung Kweon, Jiyong Kim & Simone Valdré

Update of the components

After a series of tests during summer 2022 and 2023: the two new prototypes were validated!

New developments for the future

FAZIA Korean initiative: a simpler version of the FEE Development of a "small" card with mainly the analog part (PreAmp) => Coaxial outputs

This initiative brings new developments towards simpler FAZIA block

- Increasing the angular coverage especially at larger angle (mid velocity) or backward
- More versatile for experiments with other groups (LISE, ACTAR, FRIB...)

New developments for the future

- Korean colleagues already delivered 500 and 750 μm thick for FAZIA at GANIL
- New silicon chip detectors for FAZIA developed in Korea as well (100 to 1000 μm)
- Better partnership between them and the detector companies too

Quartetto produced by MEMSPACK (chip mounting & wire-bonding)

Courtesy of Minjung Kweon

For low energy experiments (radioactive ion beams SPES, Spiral 2, FRAISE...) we must lower the identification thresholds => Thin silicon prototypes (20-30 µm).

INFN budget 20 k€ in 2023 + IN2P3

- \Rightarrow Ordering 4 protos at Micron semi-conductor.
- \Rightarrow Beam test at LNS Legnaro 2024? GANIL 2025?

 \Rightarrow Interesting developments to lower the dead zone for other silicon detectors.

Quartet standard: 4 siliciums 500 μm

1 silicium/4 20 μ m

Conclusions

Plans for symmetry energy researches.

Now

Experimental program at GANIL with INDRA & FAZIA (in parallel with other thematic)

• Complete maintenance + improvements on electronics and detectors.

Future

Development of additional FAZIA blocks in Korea for RAON.

- New updated electronics FEE boards.
- More simple electronic cards for better versatility.
- New silicon detectors of various thicknesses according to beam energies and studies.

Participation to experiments at FRIB.

- First as partner, with some spare blocks added to existing devices.
- As a whole device??