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INTRODUCTION

In heavy ions collisions, during peripheral reactions, projectile and target interact and exchange nucleons.
Isospin equilibration: projectile and target with different neutron to proton ratio equilibrate their N/Z over time.
Different interactions, leading to different EoS, produce different equilibration path.

Any experimental measurements of the isospin equilibration rate would constraint the EoS
-> See C. Ciampi, A. Jedele, S. Mallik, R. Bougault, A. Le Fevre and many other talks

Critical role of clustering at low density

Tsang PRL 92 (2004) 062701
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What is FAZIA?

FAZIA at GANIL:

12 blocks 1,8°-13,5°

192 telescopes Si-Si-Csl(Tl)
Z identification 1-54

A resolution Z~20 PSA

& 7~25 AE-E
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INDRA & FAZIA at GANIL in 2024

INDRA:
12 rings 14°-176°
240 CsI(TI) "
96 Si detectors
Z identification 1-54

A resolution Z=1-4 Csl, Z=1-6 Si-Csl
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FAZIA:

12 blocks 1,8°-13,5°

192 telescopes Si-Si-Csl(Tl)
Z identification 1-54
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Why INDRA and FAZIA for symmetry energy research?

* \Very good isotopic identification on a large scale “.‘
* Large angular isotopic resolution with INDRA upgrade ->45° N d

* Good acceptance and low thresholds -> good event characterization "“" ==
* 192 telescopes for FAZIA and 240 for INDRA -> high multiplicity
* Full digital electronics, low dead time and high acquisition rate INDRI\ F’\Zl’\
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So far, what have been done?

INDRA-FAZIA at GANIL

e E789—2019 :°8%Nj+%Nj @ 32 & 52 A MeV

e E818-2022:3°Ar +>5Ni @ 74 A MeV & *8Ni + *8Ni @ 74 A MeV
To come soon (2025)

e E884-2025:797n +2/Al,797n,2%8Ph @ 35 A MeV
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E789: Studies on isospin transport ratio with 64>8Ni+%4>8Nji @ 32 & 52 A MeV
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e C. Ciampi et al. Physical Review C 106 (2022) 024603
* C. Ciampi et al. Physical Review C 108 (2023) 054611 "."' ==
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Contact time extraction via comparison with transport models (AMD).

Longer contact time for break-up respect to QP evaporation.
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E789: Studies on isospin transport ratio with 4>8Ni+%4>8Nj @ 32 & 52 A MeV
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Next INDRA-FAZIA campaign at GANIL

E884 - 2025 :79Zn + 27Al,’9Zn,2%8Pb @ 35 A MeV

"Impact of projectile-target size asymmetry on the isospin equilibration
rate extracted From quasi projectile break-up reactions.”

We have seen in previous analyses how isospin transport evolves according to
QP decay (evaporation vs break-up) see C. Ciampi et al.

What is the role of the target?
Target as an isospin reservoir and size influence on QP evolution.

Big target  ’°Zn

Same target

Small target
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Next INDRA-FAZIA campaign at GANIL

E884 - 2025 :7%Zn + 27Al,”%Zn,?%%Pb @ 35 A MeV

"Impact of projectile-target size asymmetry on the isospin equilibration
rate extracted From quasi projectile break-up reactions.”

Zy

a angle between the QP-QT separation axis and the break-up axis
can be used as a « clock » for the breakup time scale.
- Such interpretation is still debated
- As well the target role is contrasted in literature.
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Experimental campaigns at GANIL: INDRA+FAZIA

Measurement of the '2C Hoyle state radius via double-excitation inelastic scattering tlon t

o e
Diego Gruyer nergy Stu

Université de Caen Normandie, ENSICAEN, CNRS/IN2P3, LPC Caen UMRG534, F-14000 Caen, France

E 8 8 1 Daniele Dell’Aquila

Dipartimento di Fisica, Universita degli Studi di Napoli ‘Federico 1I', Naples, Italy
(INDRA and FAZIA Collaborations)
The detailed properties of the '*C second 0% excited state, known as the Hoyle state, are both
a challenge for nuclear structure theory and have a key role in the synthesis of the elements. We
propose to measure the mean matter radius of this state by analyzing the diffraction structure

of single- and double-excitation in ?C+'2C inelastic scattering at 105 MeV beam energy. The
experimental setup will consist in the FAZIA detector.

In 2022 during E818 campaign, we had calibration beams *2C at 8,75 and 13,75 A MeV.
After having completed calibrations, during 6 hours we put a C target . For fun...

© Diego Gruyer



Experimental campaigns at GANIL: INDRA+FAZIA
In addjtj, nto
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High energies - high density aspects of nuclear EoS

Dense Nuclear Matter Equation of State from Heavy-Ton Collisions *
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High energies - high density aspects of nuclear EoS
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Long Range Plan: Dense matter theory for heavy-ion collisions

and neutron stars

Long Range Plan: Theory side
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FIG. 1. QCD phase diagram with the latest interpretation of experimental data and dynamical
simulations of regions probed by various systems. The zero baryon chemical potential axis follows
the trajectory of the early universe and coincides with the Large Hadron Collider (LHC). RHIC,
through the STAR BESII and fixed target (FXT) programs, explores the brown shaded region
a8 inferred from relativistic viscous hydrodynamic simulations [46] for /Syx = 3, 7.7, 27 GeV.
Estimates for neutron star mergers comes from numerical relativity simulations [47] and the T =0
neutron star range comes from various EOS estimates. Net-proton, K, 7 data from STAR were used
to extract T, g of light particles at freeze-out (red) and net-K, A for strange particles (hlue) from
[48]. Dilepton messurements of temperatures within the quark-gluon plasma phase from STAR,
NAG0 [49], and HADES [6] are shown in green. Thermal model fits to HADES particle yields
provide & freeze-out estimate for /5y = 2.4 GeV [50] (some ambiguity still exists [51]), shown in
marcon. The nuclear liquid-gas phase transition is based on experimental data from [52] and the
4 g estimate from [53]. The chiral transition (light red) comes from lattice QOD calculations [54].
The possible QCD critical point and the associated 1st-order phase transition line are not shown

due to uncertainty, which STAR BESII and FXT aim to reduce.

1. OVERVIEW

Understanding the behavior of dense baryonic matter is one of the central problems in

nuclear physics. Dense matter in this context is any nuclear system that contains a net




American set-up foreseen so far for an approved experiment at FRIB (end 20257?)

56,70Nj+5864Nj @ 175 A MeV

Fiber

Shadow
bars

Possible FAZIA involvements at FRIB
* Bringing some FAZIA blocks to join/complete the set-up?
* Imagine our own set-up? Of course with local support.

e Lol for PAC3 at FRIB?

=> Everything is open, let’s discuss and collaborate.

Facility for Rare Isotope Beams
at Michigan State University




Building additional FAZIA blocks for RAON 2024-....

L 3 Rare isotope
Accelerator complex for
ON-line experiments

Y g
9,

Two production methods: Separation on line (ISOL) and in flight fragmentation (IF):

* [SOL: 238U fission by proton beam at 70 MeV

* |F: 238U beam at 200 A MeV (8,3p HA)

Final project associates a large variety of radioactive beams with a big range of beam energies.
For example 132Sn at 250 A MeV with 10° pps!

But not before 2030 after building SCL2!



New developments for the future

FAZIA Front End Electronics update in South Korea

Old/current FAZIA FEE card (2 FPGA Virtex 5)

lJCLab Orsay

Naples
Analog stage Digital stage Converters stage Courtesy Of M/’njung KWGOI’),
New prototypes FAZIA FEE card (FPGA Virtex 5->Kintex 7) Jiyong Kim & Simone Valdré
One Complex Programmable Logic Device chip (VHDL) makes two FPGAs
New clock generator (old one no more available) 250->500 MHz
///.\\\ NOTICE Co
W% | Korea

Update of the components

After a series of tests during summer 2022 and 2023: the two new prototypes were validated!



New developments for the future

FAZIA Korean initiative: a simpler version of the FEE
Development of a “smal
=> Coaxial outputs

III

card with mainly the analog part (PreAmp)

Courtesy of Minjung Kweon

& Jiyong Kim
///.‘&‘ NOTICE Co
N4 | Korea

Digital stage | Converters stage

Analog stage
g stag I (no signal processing) (HV-LV)

This initiative brings new developments towards simpler FAZIA block

* Increasing the angular coverage especially at larger angle (mid velocity) or backward

* More versatile for experiments with other groups (LISE, ACTAR, FRIB...)



New developments for the future

* Korean colleagues already delivered 500 and 750 um thick for FAZIA at GANIL
* New silicon chip detectors for FAZIA developed in Korea as well (100 to 1000 um)
* Better partnership between them and the detector companies too

Quartetto produced by MEMSPACK (chip mounting & wire-bonding)

Courtesy of Minjung Kweon
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First step: The low energy Rl beams (GANIL SPIRAL 2, SPES, RAON)

For low energy experiments (radioactive ion beams

SPES, Spiral 2, FRAISE...) we must lower the identification

thresholds => Thin silicon prototypes (20-30 pum). New quartet:
1 silicium/4 20 um §

INFN budget 20 k€ in 2023 + IN2P3

= Ordering 4 protos at Micron semi-conductor.

—> Beam test at LNS Legnaro 2024? GANIL 2025?

= Interesting developments to lower the dead zone for
other silicon detectors.

Quartet standard:
4 siliciums 500 pm




Conclusions

Plans for symmetry energy researches.

Now
Experimental program at GANIL with INDRA & FAZIA (in parallel with other thematic)
* Complete maintenance + improvements on electronics and detectors.

Future

Development of additional FAZIA blocks in Korea for RAON.

* New updated electronics FEE boards.

 More simple electronic cards for better versatility.

* New silicon detectors of various thicknesses according to beam energies and studies.

Participation to experiments at FRIB.
* First as partner, with some spare blocks added to existing devices.
* As awhole device??



