Consistent description of clusters and fragments within upgraded transport models

XII International Symposium on Nuclear Symmetry Energy (NUSYM24)

GANIL - Caen (France)

9th - 13th September 2024

Authors: S. Burrello¹, M. Colonna¹, R. Wang²

¹ INFN - Laboratori Nazionali del Sud, Catania

² INFN - Sezione di Catania

Outline of the presentation

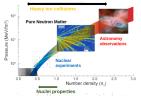
- Many-body (MB) correlations and clustering phenomena in nuclear systems
 - Understanding Equation of State (EOS) for nuclear matter (NM)
 - Phenomenological models based on energy density functionals (EDF)
- Extended EDF-based models: recent developments and results
 - Unified (thermodynamic) description of few-body correlations and clusters
 - Embedding short-range correlations within relativistic mean-field approaches
 - Global mass-shift parameterization for a multi-purposes EOS
 - Dynamical approach with light clusters as degrees of freedom (DOF)
 - Quasi-analytical study of dilute NM with light clusters and in-medium effects
 - Characterization of spinodal instability and growth rate of unstable modes
- Further developments and outlooks
 - Connection between hydrodynamical and linearized Vlasov approach
 - Extensive numerical calculations of the dynamics with light clusters
 - Consistent descriptions of fragment formation mechanisms in heavy-ion collisions
- Summary

Outline of the presentation

- Many-body (MB) correlations and clustering phenomena in nuclear systems
 - Understanding Equation of State (EOS) for nuclear matter (NM)
 - Phenomenological models based on energy density functionals (EDF)
- Extended EDF-based models: recent developments and results

- Further developments and outlooks
 - Extensive numerical calculations of the dynamics with light clusters
- Consistent descriptions of fragment formation mechanisms in heavy-ion collisions

Heavy-ion collisions (HIC) at $E_{
m beam} pprox (30-300)\, A {
m MeV} \Rightarrow {
m EOS}$

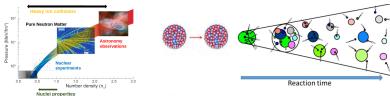


- Expansion following initial compression
 - \Rightarrow low density (ρ) & temperature (T)
 - Spinodal instabilities → Imaginerit
- Few-body correlations → light clusters
- Phenomenological EDF with clusters DOF

Theoretical challenge

Consistent dynamical approach for light clusters and heavier fragments

• Heavy-ion collisions (HIC) at $E_{
m beam} pprox (30-300) \, A {
m MeV} \Rightarrow {
m EOS}$

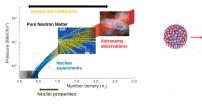


- Expansion following initial compression
 - \Rightarrow low density (ρ) & temperature (T)
 - Spinodal instabilities → fragment
 - Few-body correlations → light clusters
- Phenomenological EDF with clusters DOF
- □ Dilute NM → mixture (nucleons+nuclei)

Theoretical challeng

Consistent dynamical approach for light clusters and heavier fragments

• Heavy-ion collisions (HIC) at $E_{
m beam} pprox (30-300) \, A {
m MeV} \Rightarrow {
m EOS}$

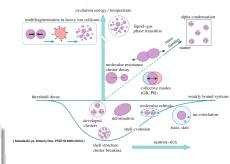


Reaction time

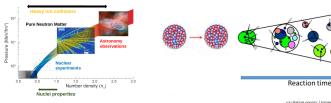
- Expansion following initial compression \Rightarrow low density (ρ) & temperature (T)
 - Spinodal instabilities → fragment
 - Few-body correlations → light clusters
- Phenomenological EDF with clusters DOF

Theoretical challenge

Consistent dynamical approach for ligh



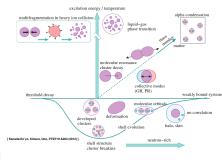
• Heavy-ion collisions (HIC) at $E_{\rm beam} pprox (30-300) \, A {
m MeV} \Rightarrow {
m EOS}$



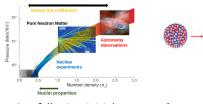
- Expansion following initial compression
 ⇒ low density (ρ) & temperature (T)
 - Spinodal instabilities → fragment
 - Few-body correlations → light clusters
- Phenomenological EDF with clusters DOF
 - Dilute NM → mixture (nucleons+nuclei)

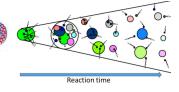
Theoretical challenge

Consistent dynamical approach for light clusters and heavier fragments



• Heavy-ion collisions (HIC) at $E_{
m beam} pprox (30-300)\, A {
m MeV} \Rightarrow {
m EOS}$

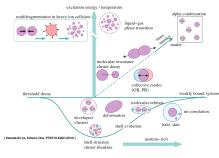




- Expansion following initial compression \Rightarrow low density (ρ) & temperature (T)
 - Spinodal instabilities → fragment
 - Few-body correlations \rightarrow light clusters
- Phenomenological EDF with clusters DOF
 - Dilute NM → mixture (nucleons+nuclei)

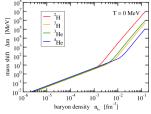
Theoretical challenge

Consistent dynamical approach for light clusters and heavier fragments

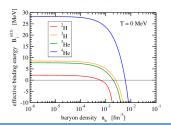


- Cluster dissolution approaching saturation from below
 - ⇒ Mott effect ruled by Pauli-blocking
- Generalized relativistic density functional (GRDF)
 - [S. Typel et al., PRC 81, 015803 (2010)]
 - Microscopic in-medium effects
 - (Effective) binding energy $\rightarrow B^{\rm eff} = B \Delta m$
- Δm^{10W} from in-medium MB **Schrödinger equation** [G. Röpke, NPA 867 (2011) 66–80]
- Parameterization $\Delta m(\rho, \beta, T, P_{c.m.}) \Rightarrow \text{heuristic } \Delta m^{\text{(high)}} \text{ beyond Mott density}$

- Cluster dissolution approaching saturation from below
 - ⇒ Mott effect ruled by Pauli-blocking
- Generalized relativistic density functional (GRDF)
 [S. Typel et al., PRC 81, 015803 (2010)]
 - Microscopic in-medium effects \Rightarrow Mass-shift (Δm)
 - (Effective) binding energy $\rightarrow B^{\mathrm{eff}} = B \Delta m$

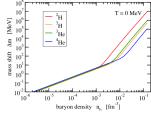


- ullet $\Delta m^{
 m (low)}$ from in-medium MB **Schrödinger equation** [G. Röpke, NPA 867 (2011) 66–80]
- Parameterization $\Delta m(\rho, \beta, T, P_{c.m.}) \Rightarrow$ heuristic $\Delta m^{(mgn)}$ beyond Mott density

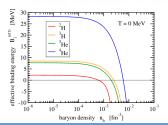


- Cluster dissolution approaching saturation from below
 - ⇒ Mott effect ruled by Pauli-blocking
 - Generalized relativistic density functional (GRDF)

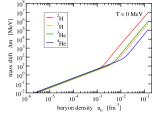
 [S. Typel et al., PRC 81, 015803 (2010)]
 - Microscopic in-medium effects \Rightarrow Mass-shift (Δm)
 - (Effective) binding energy $\rightarrow B^{\text{eff}} = B \Delta m$



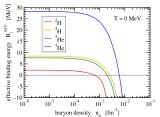
- ullet $\Delta m^{
 m (low)}$ from in-medium MB **Schrödinger equation** [G. Röpke, NPA 867 (2011) 66–80]
- Parameterization $\Delta m(\rho, \beta, T, P_{c.m.}) \Rightarrow$ heuristic Δm^{tingin} beyond Mott density



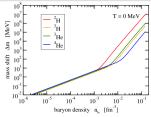
- Cluster dissolution approaching saturation from below
 - ⇒ Mott effect ruled by Pauli-blocking
- Generalized relativistic density functional (GRDF)
 [S. Typel et al., PRC 81, 015803 (2010)]
 - Microscopic in-medium effects \Rightarrow Mass-shift (Δm)
 - (Effective) binding energy $o B^{\mathrm{eff}} = B \Delta m$



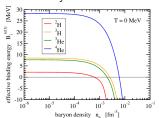
- ullet $\Delta m^{
 m (low)}$ from in-medium MB **Schrödinger equation** [G. Röpke, NPA 867 (2011) 66–80]
- Parameterization $\Delta \textit{m}(
 ho, eta, T, P_{\text{c.m.}}) \Rightarrow \mathsf{heuristic} \ \Delta \textit{m}^{(\text{high})}$ beyond Mott density
 - ullet Bound clusters survive only if $|P_{
 m c.m.}| > P_{
 m Mott}$ (Mott momentum
 - Few-body correlations in the continuum survive (not included in GRDF)

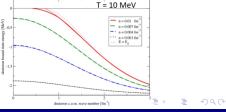


- Cluster dissolution approaching saturation from below
 - ⇒ Mott effect ruled by Pauli-blocking
- Generalized relativistic density functional (GRDF)
 [S. Typel et al., PRC 81, 015803 (2010)]
 - Microscopic in-medium effects \Rightarrow Mass-shift (Δm)
 - (Effective) binding energy \rightarrow $B^{\mathrm{eff}} = B \Delta m$



- ullet $\Delta m^{
 m (low)}$ from in-medium MB **Schrödinger equation** [G. Röpke, NPA 867 (2011) 66–80]
- Parameterization $\Delta m(\rho, \beta, T, \mathbf{P}_{c.m.}) \Rightarrow \mathbf{heuristic} \ \Delta m^{(high)}$ beyond Mott density
 - ullet Bound clusters survive only if $|P_{
 m c.m.}| > P_{
 m Mott}$ (Mott momentum)
 - Few-body correlations in the continuum survive (not included in GRDF)





Outline of the presentation

- Many-body (MB) correlations and clustering phenomena in nuclear systems
- - Unified (thermodynamic) description of few-body correlations and clusters
 - Embedding short-range correlations within relativistic mean-field approaches
 - Global mass-shift parameterization for a multi-purposes EOS

Extended EDF-based models: recent developments and results

- Dynamical approach with light clusters as degrees of freedom (DOF)
 - Quasi-analytical study of dilute NM with light clusters and in-medium effects
 - Characterization of spinodal instability and growth rate of unstable modes
- Further developments and outlooks
- Extensive numerical calculations of the dynamics with light clusters
 Consistent descriptions of fragment formation, mechanisms in beautier callicions.
- Summary

Outline of the presentation

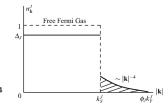
- Many-body (MB) correlations and clustering phenomena in nuclear systems
 - Phenomenological models based on energy density functionals (EDF)
- Extended EDF-based models: recent developments and results
 - Unified (thermodynamic) description of few-body correlations and clusters
 - Embedding short-range correlations within relativistic mean-field approaches
 - Global mass-shift parameterization for a multi-purposes EOS
 - Dynamical approach with light clusters as degrees of freedom (DOF)
 Quasi-analytical study of dilute NM with light clusters and in-medium expressions.
- Further developments and outlooks
- Extensive numerical calculations of the dynamics with light clusters
- Summary

Short-range correlations within GRDF model

- NM beyond Mott density: free Fermi gas

 ⇒ step function in momentum distribution at zero T
- ⇒ **step** function in **momentum distribution** at zero
- Nucleon knock-out in inelastic electron scattering
 [O. Hen et al. (CLAS Coll.), Science 346, 614 (2014)]
 - Smearing of Fermi surface in cold nucleonic matter
 - ullet High momentum tail (HMT) decreasing with $\sim |{f k}|^{-4}$
- Nucleon-nucleon short-range correlations (SRCs)
 - Tensor components or repulsive core of nuclear forces
- Embedding (effectively) SRCs in GRDF model using quasi-clusters as surrogate

[S. Burrello, S. Typel, EPJA 58, 120 (2022)]



Short-range correlations within GRDF model

- NM beyond Mott density: free Fermi gas

 ⇒ step function in momentum distribution at zero T
- Nucleon knock-out in inelastic electron scattering
 [O. Hen et al. (CLAS Coll.), Science 346, 614 (2014)]
 - Smearing of Fermi surface in cold nucleonic matter
 - ullet High momentum tail (HMT) decreasing with $\sim |{f k}|^{-4}$
- Nucleon-nucleon short-range correlations (SRCs)
 - Tensor components or repulsive core of nuclear forces
 - Embedding (effectively) SRCs in **GRDF** model using quasi-clusters as surrogate [S. Burrello, S. Typel, EPJA 58, 120 (2022)]
 - Two-body correlations in np 3S_1 channel \Rightarrow quasi-deuteron
 - $\approx 20\%$ of nucleons in pairs \Rightarrow Quasi-deuteron mass fraction $X_d(\rho_0) = 0.2$
 - $T = 0 \Rightarrow$ condensate of quasi-deuterons under chemical equilibrium

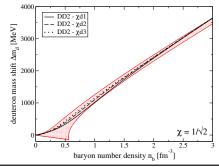
$$\mu_{d} = \mu_{n} + \mu_{p} \Rightarrow \boxed{m_{d}^{*} + \Delta m_{d}^{(\text{high})} + V_{d}^{\prime} = \sqrt{k_{n}^{2} + (m_{n}^{*})^{2}} + V_{n}^{\prime} + \sqrt{k_{p}^{2} + (m_{p}^{*})^{2}} + V_{p}^{\prime}}$$

• Interpolation between $\Delta m_d^{(\mathrm{low})}$, $\Delta m_d^{(\mathrm{high})}$, $\Delta m_d(\rho_0)$

Mass-shift parametrization and impact on EOS

• Unified mass-shift parameterization ($\gamma = 1$) [S. Burrello, S. Typel, EPJA 58, 120 (2022)]

$$X_d(
ho_b) \Leftarrow \Delta m_d(x) = rac{ax}{1+bx} + cx^{\eta+1} \left[1- anh\left(x
ight)
ight] + \mathit{fx}^{\gamma} anh\left(\mathit{gx}
ight), \qquad x = rac{
ho_b}{
ho_0}$$

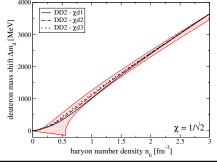


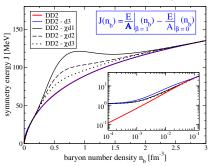
	а	b	С	η	f	g
DD2 - χd1	541.726060	243.472387	99.677247	1.656159	181.113975	0.18
DD2 - χd2	541.726060	243.472387	70.476986	1.230947	181.113975	0.22
DD2 - χd3	541.726060	243.472387	41.777908	0.257252	181.113975	0.26

Mass-shift parametrization and impact on EOS

ullet Unified mass-shift parameterization $(\gamma=1)$ [S. Burrello, S. Typel, EPJA 58, 120 (2022)]

$$X_d(
ho_b) \Leftarrow \Delta m_d(x) = rac{ax}{1+bx} + cx^{\eta+1} \left[1- anh(x)
ight] + fx^{\gamma} anh(gx), \qquad x = rac{
ho_b}{
ho_0}$$





	a	Ь	С	η	f	g
DD2 - χd1	541.726060	243.472387	99.677247	1.656159	181.113975	0.18
DD2 - χd2	541.726060	243.472387	70.476986	1.230947	181.113975	0.22
DD2 - χd3	541.726060	243.472387	41.777908	0.257252	181.113975	0.26

Outline of the presentation

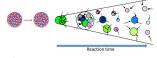
- Many-body (MB) correlations and clustering phenomena in nuclear systems

Extended EDF-based models: recent developments and results

- Unified (thermodynamic) description of few-body correlations and clusters
 - Dynamical approach with light clusters as degrees of freedom (DOF)
 - Quasi-analytical study of dilute NM with light clusters and in-medium effects
 - Characterization of spinodal instability and growth rate of unstable modes
- Further developments and outlooks
- Extensive numerical calculations of the dynamics with light clusters
- Summary

Kinetic approach for HIC with light-clusters DOF

- Dynamical processes modelizations ⇒ Transport theories
 - Lack of consistent description of light and heavier fragments



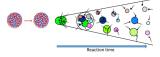
• Kinetic approach of light-nuclei production in HIC at intermediate energie

Boltzmann-Uehling-Uhlenbeck model + collision integral control (Mott effect)

 R Wang X-G Ma L-W Chen C M Ka K-L Sun & Z Zhang PRC 108 1031601 (2023)

Kinetic approach for HIC with light-clusters DOF

- Dynamical processes modelizations ⇒ Transport theories
 - Lack of consistent description of light and heavier fragments

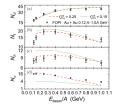


- Kinetic approach of light-nuclei production in HIC at intermediate energies
 - Boltzmann-Uehling-Uhlenbeck model + collision integral cut-off (Mott effect)

[R. Wang, Y.-G. Ma, L.-W. Chen, C. M. Ko, K.-J. Sun, & Z. Zhang, PRC 108, L031601 (2023)]

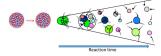
$$(\partial_t + \nabla_{\mathbf{p}}\varepsilon_{\tau} \cdot \nabla_{\mathbf{r}} - \nabla_{\mathbf{r}}\varepsilon_{\tau} \cdot \nabla_{\mathbf{p}}) f_{\tau} = I_{\tau}^{\text{coll}}[f_n, f_p, \dots], \qquad \tau = n, p, d, t, h, \alpha$$

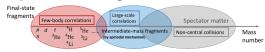
$$\langle f_N \rangle_A \equiv \int d\mathbf{p} f_N \left(\frac{\mathbf{P}}{A} + \mathbf{p} \right) \rho_A (\mathbf{p}) \leq f_A^{\mathrm{cut}}$$



Kinetic approach for HIC with light-clusters DOF

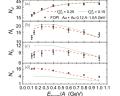
- Dynamical processes modelizations ⇒ Transport theories
 - Lack of consistent description of light and heavier fragments

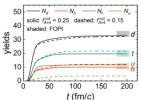




- Kinetic approach of light-nuclei production in HIC at intermediate energies
 - Boltzmann-Uehling-Uhlenbeck model + collision integral cut-off (Mott effect)

$$(\partial_t + \nabla_{\mathbf{p}} \varepsilon_{\tau} \cdot \nabla_{\mathbf{r}} - \nabla_{\mathbf{r}} \varepsilon_{\tau} \cdot \nabla_{\mathbf{p}}) f_{\tau} = I_{\tau}^{\text{coll}} [f_n, f_p, \dots], \qquad \tau = n, p, d, t, h, \alpha$$
$$\langle f_N \rangle_A \equiv \int d\mathbf{p} f_N \left(\frac{\mathbf{P}}{A} + \mathbf{p} \right) \rho_A(\mathbf{p}) \leq f_A^{\text{cut}}$$





Our goal

Assess if light clusters (from compression phase) affect spinodal instability (expansion stage)

- Non-relativistic framework ⇒ dynamical treatment more easily carried out
- Cut-off (Mott) momentum Λ_j for Pauli-blocking

$$\rho_j = g_j \int_{|\mathbf{p}| > \Lambda_j} \frac{d\mathbf{p}}{(2\pi\hbar)^3} f_j \qquad j = n, p, d \qquad (\Lambda_q = 0, \text{ for } q = n, p)$$

Chemical **equilibrium** \Rightarrow $X_d=rac{
ho_d}{
ho_0}$ **consistent** with **benchmark** calculations [cf. Röpke]

- Non-relativistic framework ⇒ dynamical treatment more easily carried out
- Cut-off (Mott) momentum Λ_j for Pauli-blocking

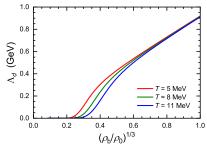
$$\rho_j = g_j \int_{|\mathbf{p}| > \Lambda_j} \frac{d\mathbf{p}}{(2\pi\hbar)^3} f_j \qquad j = n, p, d \qquad (\Lambda_q = 0, \text{ for } q = n, p)$$

Chemical **equilibrium** \Rightarrow $X_d = rac{
ho_d}{
ho_0}$ **consistent** with **benchmark** calculations [cf. Röpke]

- ullet Non-relativistic framework \Rightarrow dynamical treatment more easily carried out
- Cut-off (Mott) momentum Λ_j for Pauli-blocking $\Rightarrow \Lambda_j(\rho_b, T)$ parameterization

$$\rho_j = g_j \int_{|\mathbf{p}| > \Lambda_j} \frac{d\mathbf{p}}{(2\pi\hbar)^3} f_j \qquad j = n, p, d \qquad (\Lambda_q = 0, \text{ for } q = n, p)$$

Chemical equilibrium $\Rightarrow X_d = \frac{\rho_d}{\rho_0}$ consistent with benchmark calculations [cf. Röpke]

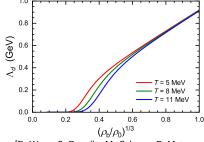


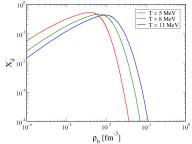
[R. Wang, S. Burrello, M. Colonna, F. Matera, arXiv:2405.02157, accepter for PRC-Letter]

- Non-relativistic framework \Rightarrow dynamical treatment more easily carried out
- **Cut-off** (Mott) momentum Λ_i for Pauli-blocking $\Rightarrow \Lambda_i(\rho_b, T)$ parameterization

$$\rho_j = g_j \int_{|\mathbf{p}| > \Lambda_j} \frac{d\mathbf{p}}{(2\pi\hbar)^3} f_j \qquad j = n, p, d \qquad (\Lambda_q = 0, \text{ for } q = n, p)$$

Chemical equilibrium $\Rightarrow X_d = \frac{\rho_d}{r}$ consistent with benchmark calculations [cf. Röpke]





[R. Wang, S. Burrello, M. Colonna, F. Matera, arXiv:2405.02157, accepter for PRC-Letter]

Linearized Vlasov equations for NM+deuterons

Linear response to collision-less Boltzmann ⇒ linearized Vlasov equations for NMd

$$\partial_t \left(\delta f_j \right) + \nabla_{\mathbf{r}} (\delta f_j) \cdot \nabla_{\mathbf{p}} \varepsilon_j - \nabla_{\mathbf{p}} f_j \cdot \nabla_{\mathbf{r}} (\delta \varepsilon_j) = 0 \quad \Rightarrow \quad \delta \rho_j = -\chi_j \sum_l \left(F_0^{jl} + \tilde{F}_\lambda^{jl} \right) \delta \rho_l - \delta_{jd} \sum_l \Phi_\lambda^{dl} \delta \rho_l$$

• Single-particle energy $\varepsilon_j \equiv \frac{\delta \mathcal{E}}{\delta f_j(\mathbf{p})}$ (from EDF $\mathcal{E} = \mathcal{K} + \mathcal{U}$)

$$\varepsilon_j = \frac{\rho^2}{2m_j} + U_j + \tilde{\varepsilon}_j^{\lambda} \qquad (\tilde{\varepsilon}_j^{\lambda} \propto \Phi_{\lambda}^{dj} \sim \frac{\partial \Lambda_d}{\partial \rho_j})$$

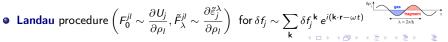
Momentum-independent Skyrme-like interaction (= for bound and free nucleons)

$$\mathcal{U} = \frac{A}{2} \frac{\rho_b^2}{\rho_0} + \frac{B}{\alpha + 2} \frac{\rho_b^{\alpha + 2}}{\rho_0^{\alpha + 1}} + \frac{C(\rho)}{2} \frac{\rho_3^2}{\rho_0} + \frac{D}{2} (\nabla_r \rho_b)^2 - \frac{D_3}{2} (\nabla_r \rho_3)^2$$

• Density-dependent (Mott) momentum cut-off \Rightarrow extra-terms in both $\delta \rho_j$ and ε_j

$$\rho_{j} = g_{j} \int_{|\mathbf{p}| > \Lambda_{j}} \frac{d\mathbf{p}}{(2\pi\hbar)^{3}} f_{j} \quad j = n, p, d \quad \rightarrow \quad \delta \rho_{j}(\mathbf{r}, t) = g_{j} \int_{|\mathbf{p}| > \Lambda_{j}} \frac{d\mathbf{p}}{(2\pi\hbar)^{3}} \delta f_{j} - \delta_{jd} \sum_{l = n, p, d} \Phi_{\lambda}^{dl} \delta \rho_{ll} \int_{\mathbf{p}} \frac{d\mathbf{p}}{(2\pi\hbar)^{3}} \delta f_{j} - \delta_{jd} \sum_{l = n, p, d} \Phi_{\lambda}^{dl} \delta \rho_{ll} \int_{\mathbf{p}} \frac{d\mathbf{p}}{(2\pi\hbar)^{3}} \delta f_{j} - \delta_{jd} \sum_{l = n, p, d} \Phi_{\lambda}^{dl} \delta \rho_{ll} \int_{\mathbf{p}} \frac{d\mathbf{p}}{(2\pi\hbar)^{3}} \delta f_{j} - \delta_{jd} \sum_{l = n, p, d} \Phi_{\lambda}^{dl} \delta \rho_{ll} \int_{\mathbf{p}} \frac{d\mathbf{p}}{(2\pi\hbar)^{3}} \delta f_{j} - \delta_{jd} \sum_{l = n, p, d} \Phi_{\lambda}^{dl} \delta \rho_{ll} \int_{\mathbf{p}} \frac{d\mathbf{p}}{(2\pi\hbar)^{3}} \delta f_{j} - \delta_{jd} \sum_{l = n, p, d} \Phi_{\lambda}^{dl} \delta \rho_{ll} \int_{\mathbf{p}} \frac{d\mathbf{p}}{(2\pi\hbar)^{3}} \delta f_{j} - \delta_{jd} \sum_{l = n, p, d} \Phi_{\lambda}^{dl} \delta \rho_{ll} \int_{\mathbf{p}} \frac{d\mathbf{p}}{(2\pi\hbar)^{3}} \delta f_{j} - \delta_{jd} \sum_{l = n, p, d} \Phi_{\lambda}^{dl} \delta \rho_{ll} \int_{\mathbf{p}} \frac{d\mathbf{p}}{(2\pi\hbar)^{3}} \delta f_{j} - \delta_{jd} \sum_{l = n, p, d} \Phi_{\lambda}^{dl} \delta \rho_{ll} \int_{\mathbf{p}} \frac{d\mathbf{p}}{(2\pi\hbar)^{3}} \delta f_{j} - \delta_{jd} \sum_{l = n, p, d} \Phi_{\lambda}^{dl} \delta \rho_{ll} \int_{\mathbf{p}} \frac{d\mathbf{p}}{(2\pi\hbar)^{3}} \delta f_{j} - \delta_{jd} \sum_{l = n, p, d} \Phi_{\lambda}^{dl} \delta \rho_{ll} \int_{\mathbf{p}} \frac{d\mathbf{p}}{(2\pi\hbar)^{3}} \delta f_{j} - \delta_{jd} \sum_{l = n, p, d} \Phi_{\lambda}^{dl} \delta \rho_{ll} \int_{\mathbf{p}} \frac{d\mathbf{p}}{(2\pi\hbar)^{3}} \delta f_{j} - \delta_{jd} \sum_{l = n, p, d} \Phi_{\lambda}^{dl} \delta \rho_{ll} \int_{\mathbf{p}} \frac{d\mathbf{p}}{(2\pi\hbar)^{3}} \delta f_{j} - \delta_{jd} \sum_{l = n, p, d} \Phi_{\lambda}^{dl} \delta \rho_{ll} \int_{\mathbf{p}} \frac{d\mathbf{p}}{(2\pi\hbar)^{3}} \delta f_{j} - \delta_{jd} \sum_{l = n, p, d} \Phi_{\lambda}^{dl} \delta \rho_{ll} \delta \rho_{ll$$

• $\Phi_{\lambda}^{dl} \neq 0 \Rightarrow$ adding **in-medium** effects for cluster appearance/dissolution in dynamics

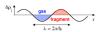


• Solving linearized Vlasov equations \Rightarrow dispersion relation $\omega = \omega(k)$

$$\delta\rho_{j}=-\chi_{j}\sum_{l}\left(\mathbf{F}_{0}^{jl}+\tilde{\mathbf{F}}_{\lambda}^{jl}\right)\delta\rho_{l}-\delta_{jd}\sum_{l}\Phi_{\lambda}^{dl}\delta\rho_{l}$$

• $\omega = \operatorname{Im}(\omega) \Leftrightarrow \text{unstable mode (spinodal region)}$

[R. Wang, S. Burrello, M. Colonna, F. Matera, arXiv:2405.02157



• Solving linearized Vlasov equations \Rightarrow dispersion relation $\omega = \omega(k)$

$$\delta\rho_{j}=-\chi_{j}\sum_{l}\left(\mathbf{F}_{0}^{jl}+\tilde{\mathbf{F}}_{\lambda}^{jl}\right)\delta\rho_{l}-\delta_{jd}\sum_{l}\Phi_{\lambda}^{dl}\delta\rho_{l}$$

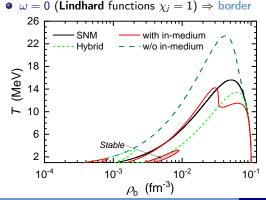
• $\omega = \text{Im}(\omega) \Leftrightarrow \text{unstable mode (spinodal region)}$ [R. Wang, S. Burrello, M. Colonna, F. Matera, arXiv:2405.02157]

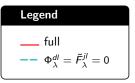
• Solving linearized Vlasov equations \Rightarrow dispersion relation $\omega = \omega(k)$

$$\delta
ho_j = -\chi_j \sum_l \left(F_0^{jl} + \tilde{F}_\lambda^{jl} \right) \delta
ho_l - \delta_{jd} \sum_l \Phi_\lambda^{dl} \delta
ho_l$$

• $\omega = \text{Im}(\omega) \Leftrightarrow \text{unstable mode (spinodal region)}$

[R. Wang, S. Burrello, M. Colonna, F. Matera, arXiv:2405.02157]



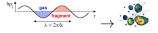


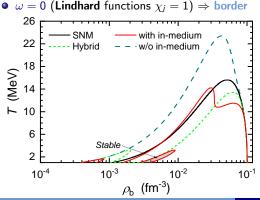
• Solving linearized Vlasov equations \Rightarrow dispersion relation $\omega = \omega(k)$

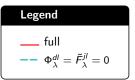
$$\delta \rho_j = -\chi_j \sum_l \left(F_0^{jl} + \tilde{F}_{\lambda}^{jl} \right) \delta \rho_l - \delta_{jd} \sum_l \Phi_{\lambda}^{dl} \delta \rho_l$$

• $\omega = \text{Im}(\omega) \Leftrightarrow \text{unstable mode (spinodal region)}$

[R. Wang, S. Burrello, M. Colonna, F. Matera, arXiv:2405.02157]







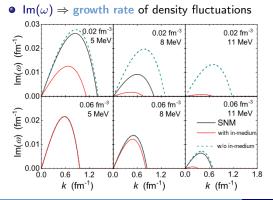
In-medium effects in dynamics

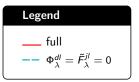
- Dawn of meta-stable region
 [G. Röpke et al, NPA 970, 224 (2018)]
- Slowdown of instability rate

• Solving linearized Vlasov equations \Rightarrow dispersion relation $\omega = \omega(k)$

$$\delta \rho_{j} = -\chi_{j} \sum_{l} \left(F_{0}^{jl} + \tilde{F}_{\lambda}^{jl} \right) \delta \rho_{l} - \delta_{jd} \sum_{l} \Phi_{\lambda}^{dl} \delta \rho_{l}$$

• $\omega = \text{Im}(\omega) \Leftrightarrow \text{unstable mode (spinodal region)}$ [R. Wang, S. Burrello, M. Colonna, F. Matera, arXiv:2405.02157]



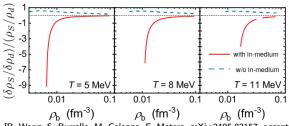


In-medium effects in dynamics

- Dawn of meta-stable region [G. Röpke et al, NPA 970, 224 (2018)]
- **Slowdown** of instability rate

Instability direction: "distillation" mechanism

- Direction of instability in space of density fluctuations: $\frac{\delta
 ho_{\mathsf{S}}}{\delta
 ho_{\mathsf{d}}} \left(
 ho_{\mathsf{S}} =
 ho_{\mathsf{n}} +
 ho_{\mathsf{p}}
 ight)$
 - $\frac{\delta
 ho_S}{\delta
 ho_d} \gtrless 0 \Rightarrow$ **Nucleons** and deuterons fluctuations move in (out) of phase

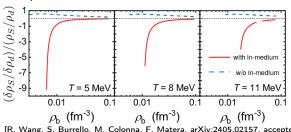


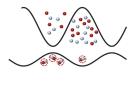
[R. Wang, S. Burrello, M. Colonna, F. Matera, arXiv:2405.02157, accepted for PRC Letter]

- NMd with no in-medium effects:
- NMd with in-medium effects:
- Favored growth of instabilities
- Cooperation to form fragments

Instability direction: "distillation" mechanism

- Direction of instability in space of density fluctuations: $\frac{\delta \rho_{\rm S}}{\delta \rho_{\rm d}} \left(\rho_{\rm S} = \rho_{\rm n} + \rho_{\rm p} \right)$
 - $\frac{\delta
 ho_S}{\delta
 ho_d} \gtrless 0 \Rightarrow$ **Nucleons** and deuterons fluctuations move in (out) of phase





[R. Wang, S. Burrello, M. Colonna, F. Matera, arXiv:2405.02157, accepted for PRC Letter]

- NMd with no in-medium effects:
 - Favored growth of instabilities
 - Cooperation to form fragments
- NMd with in-medium effects:
 - Deuterons move to low densities
 - They might be separately emitted ⇒ "distillation" mechanism

Outline of the presentation

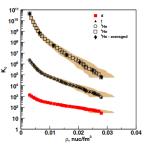
- Many-body (MB) correlations and clustering phenomena in nuclear systems
- Phenomenological models based on energy density functionals (EDF)
- Extended EDF-based models: recent developments and results

- Further developments and outlooks
 - Connection between hydrodynamical and linearized Vlasov approach
 - Extensive numerical calculations of the dynamics with light clusters
 - Consistent descriptions of fragment formation mechanisms in heavy-ion collisions
- Summary

Further developments and outlooks

- Scaling factor for deuteron coupling strenght in $\mathcal{U}(\rho)$ (with $\rho = \sum_j A_j \eta_j \rho_j$)
- $\eta_d=1\Rightarrow$ nucleons **bound** in deuterons feel the same potential as free nucleons
- $\eta_d < 1 \Rightarrow$ in-medium effects and description of chemical equilibrium constant [L. Qin et al., PRL 108, 172701 (2012); R. Bougault et al., J. Phys. G 47, 025103 (2020)]
- Alternative framework for spinodal instability ⇒ Hydrodynamical approach
 ⇒ hydrodynamics vs linearized Vlasov with density-dependent cut-off

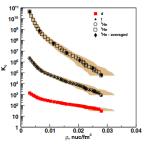
[S. Burrello, M. Colonna, R. Wang, in preparation]



Further developments and outlooks

- Scaling factor for deuteron coupling strenght in $\mathcal{U}(\rho)$ (with $\rho = \sum_j A_j \eta_j \rho_j$)
- $\eta_d=1\Rightarrow$ nucleons **bound** in deuterons feel the same potential as free nucleons
- $\eta_d < 1 \Rightarrow$ in-medium effects and description of chemical equilibrium constant [L. Qin et al., PRL 108, 172701 (2012); R. Bougault et al., J. Phys. G 47, 025103 (2020)]
- Alternative framework for spinodal instability ⇒ Hydrodynamical approach
 ⇒ hydrodynamics vs linearized Vlasov with density-dependent cut-off

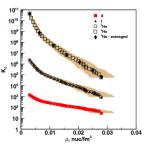
[S. Burrello, M. Colonna, R. Wang, in preparation]



Further developments and outlooks

- Scaling factor for **deuteron** coupling strenght in $\mathcal{U}(\rho)$ (with $\rho = \sum_j A_j \eta_j \rho_j$)
- $\eta_d=1\Rightarrow$ nucleons **bound** in deuterons feel the same potential as free nucleons
- $\eta_d < 1 \Rightarrow$ in-medium effects and description of chemical equilibrium constant [L. Qin et al., PRL 108, 172701 (2012); R. Bougault et al., J. Phys. G 47, 025103 (2020)]
- Alternative framework for spinodal instability ⇒ Hydrodynamical approach
 ⇒ hydrodynamics vs linearized Vlasov with density-dependent cut-off

[S. Burrello, M. Colonna, R. Wang, in preparation]



Work in progress

- Extensive calculations (other light clusters, ANM)
 - Different parameterizations for interaction & cut-off
- Consistent description of HIC fragmentation mechanisms
 - Beyond quasi-analytical ⇒ numerical calculations

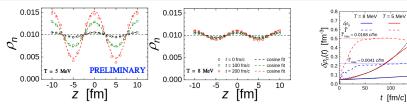
0.024

0.012

-0.006

0.006 ₹

Numerical Vlasov solution: preliminary results

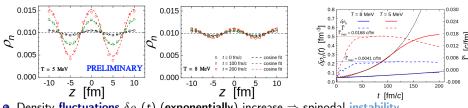


- Density fluctuations $\delta \rho_n(t)$ (exponentially) increase \Rightarrow spinodal instability
- No constant growth factor $\tilde{\Gamma}(t) = \ln \left[\frac{\delta \rho_n(t)}{\delta \rho_n(t=0)} \right] / t \Rightarrow \text{not uniform system}$
- ullet **Test-particle** method \Rightarrow **triangular** profile
- S-finite size reduces growth rate

$$S(\mathbf{r}_{i} - \mathbf{r}) = \frac{1}{(nl/2)^{6}} g(\Delta x) g(\Delta y) g(\Delta z)$$
$$g(q) = \left(\frac{nl}{2} - |q|\right) \theta\left(\frac{nl}{2} - |q|\right)$$

 \bullet $nl \to 0 \Rightarrow$ quasi-analytical linearized results

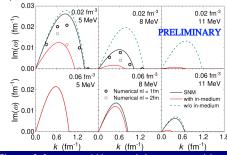
Numerical Vlasov solution: preliminary results



- Density fluctuations $\delta \rho_n(t)$ (exponentially) increase \Rightarrow spinodal instability
- No constant growth factor $\tilde{\Gamma}(t) = \ln \left[\frac{\delta \rho_n(t)}{\delta \rho_n(t=0)} \right] / t \Rightarrow \text{not uniform system}$
- ullet Test-particle method \Rightarrow triangular profiles
 - ullet S-finite size reduces growth rate

$$S(\mathbf{r}_{i} - \mathbf{r}) = \frac{1}{(nl/2)^{6}} g(\Delta x) g(\Delta y) g(\Delta z)$$
$$g(q) = \left(\frac{nl}{2} - |q|\right) \theta\left(\frac{nl}{2} - |q|\right)$$

• $nl \rightarrow 0 \Rightarrow$ quasi-analytical linearized results



Outline of the presentation

- Many-body (MB) correlations and clustering phenomena in nuclear systems
 Understanding Equation of State (EOS) for nuclear matter (NM)
 Phenomenological models based on energy density functionals (EDF)
- Extended EDF-based models: recent developments and results

- Further developments and outlooks
 - Connection between hydrodynamical and linearized viasov approach
 - ullet Extensive numerical calculations of the dynamics with light clusters
 - Consistent descriptions of fragment formation mechanisms in heavy-ion collisions
- Summary

Final remarks and conclusions

Main topic

- Description of correlations & clustering with phenomenological EDF models
- Dynamics of dilute NM with light clusters DOF and local in-medium effects

Main results

- Unified mass-shift parametrization for deuterons & SRCs and impact on EOS
- Role of clusters on SNM spinodal instability and fragmentation dynamics
- Impact of in-medium effects on growth rates and distillation mechanism

Further developments and outlooks

- Screening effects for bound nucleons and connection with hydrodynamics
- Extension to ANM with other light clusters and effective interaction
- Numerical calculations & consistent description of HIC fragment formation

Final remarks and conclusions

Main topic

- Description of correlations & clustering with phenomenological EDF models
- Dynamics of dilute NM with light clusters DOF and local in-medium effects

Main results

- Unified mass-shift parametrization for deuterons & SRCs and impact on EOS
- Role of clusters on SNM spinodal instability and fragmentation dynamics
- Impact of in-medium effects on growth rates and distillation mechanism

Further developments and outlooks

- Screening effects for bound nucleons and connection with hydrodynamics
- Extension to ANM with other light clusters and effective interaction
- Numerical calculations & consistent description of HIC fragment formation

THANK YOU FOR YOUR ATTENTION!

