Consistent description of clusters and fragments within upgraded transport models

XII International Symposium on Nuclear Symmetry Energy (NUSYM24)

GANIL - Caen (France)

 9^{th} - 13^{th} September 2024

 $\mathsf{Authors}\!\!: \mathsf{S}\!\!.$ Burrello 1 , M. Colonna 1 , R. Wang 2

1 INFN - Laboratori Nazionali del Sud, Catania

2 [IN](#page-0-0)[F](#page-1-0)[N -](#page-0-0) [Se](#page-1-0)[zion](#page-0-0)[e](#page-1-0) [di](#page-0-0) [Cat](#page-43-0)ania

 Ω

S. Burrello, M. Colonna, R. Wang [Clusters & fragments within upgraded transport models](#page-43-0)

∢ロ ▶ (何 ▶ (ヨ ▶ (ヨ ▶

 Ω

Outline of the presentation

- **4** Many-body (MB) correlations and clustering phenomena in nuclear systems
	- Understanding Equation of State (EOS) for nuclear matter (NM)
	- Phenomenological models based on energy density functionals (EDF)

² Extended EDF-based models: recent developments and results

- ✏ Unified (thermodynamic) description of few-body correlations and clusters
	- Embedding short-range correlations within relativistic mean-field approaches
	- Global mass-shift parameterization for a multi-purposes EOS
- ✏ Dynamical approach with light clusters as degrees of freedom (DOF)
	- Quasi-analytical study of dilute NM with light clusters and in-medium effects
	- Characterization of spinodal instability and growth rate of unstable modes

3 Further developments and outlooks

- Connection between hydrodynamical and linearized Vlasov approach
- Extensive numerical calculations of the dynamics with light clusters \bullet
- Consistent descriptions of fragment formation mechanisms in heavy-ion collisions

Summary

[Equation of state and phenomenological models](#page-1-0) [In-medium effects and correlations in the continuum](#page-8-0)

Outline of the presentation

- **1** Many-body (MB) correlations and clustering phenomena in nuclear systems
	- Understanding Equation of State (EOS) for nuclear matter (NM)
	- Phenomenological models based on energy density functionals (EDF) \bullet

-
-
-

4 17 18 **1. 60 m** \rightarrow \pm \sim Ω

[Equation of state and phenomenological models](#page-1-0) [In-medium effects and correlations in the continuum](#page-8-0)

Heavy-ion collisions: clustering effects and EOS

Heavy-ion collisions (HIC) at $E_{\text{beam}} \approx (30 - 300)$ AMeV \Rightarrow EOS \bullet

- Expansion following initial compression
	-
	-
	-
- -

K ロ ト K 何 ト K ヨ ト

 QQ

[Equation of state and phenomenological models](#page-1-0) [In-medium effects and correlations in the continuum](#page-8-0)

Heavy-ion collisions: clustering effects and EOS

 \bullet Heavy-ion collisions (HIC) at $E_{\text{beam}} \approx (30 - 300)$ AMeV \Rightarrow EOS

• Expansion following initial compression \Rightarrow low density (ρ) & temperature (T)

-
- Few-body correlations \rightarrow light clusters
- -

S. Burrello, M. Colonna, R. Wang [Clusters & fragments within upgraded transport models](#page-0-0)

つくへ

A 450 W

4 17 18

[Equation of state and phenomenological models](#page-1-0) [In-medium effects and correlations in the continuum](#page-8-0)

Heavy-ion collisions: clustering effects and EOS

 \bullet Heavy-ion collisions (HIC) at $E_{\text{beam}} \approx (30 - 300)$ AMeV \Rightarrow EOS

- Spinodal instabilities \rightarrow fragment
- **Few-body** correlations \rightarrow light clusters \bullet
-

S. Burrello, M. Colonna, R. Wang [Clusters & fragments within upgraded transport models](#page-0-0)

[Equation of state and phenomenological models](#page-1-0) [In-medium effects and correlations in the continuum](#page-8-0)

Heavy-ion collisions: clustering effects and EOS

 \bullet Heavy-ion collisions (HIC) at $E_{\text{beam}} \approx (30 - 300)$ AMeV \Rightarrow EOS

- Spinodal instabilities \rightarrow fragment
- Few-body correlations \rightarrow light clusters
- **Phenomenological EDF with clusters DOF**
	- Dilute $NM \rightarrow$ mixture (nucleons+nuclei) \bullet

S. Burrello, M. Colonna, R. Wang [Clusters & fragments within upgraded transport models](#page-0-0)

[Equation of state and phenomenological models](#page-1-0) [In-medium effects and correlations in the continuum](#page-8-0)

Heavy-ion collisions: clustering effects and EOS

 \bullet Heavy-ion collisions (HIC) at $E_{\text{beam}} \approx (30 - 300)$ AMeV \Rightarrow EOS

- **•** Expansion following initial compression \Rightarrow low density (ρ) & temperature (T)
	- Spinodal instabilities \rightarrow fragment
	- Few-body correlations \rightarrow light clusters
- **Phenomenological EDF with clusters DOF**
	- Dilute $NM \rightarrow$ mixture (nucleons+nuclei) \bullet

Theoretical challenge

Consistent dynamical approach for light clusters and heavier fragments

liquid-gas phase transition molecular resonanc cluster decay collective modes (GR, PR) threshold decay weakly bound system molecular orbital nn correlation deformation developed clusters halo, skii shell evolution Kanada-En'yo, Kimura, Ono, PTEP 01A202 (2012) neutron-ricl shell structure cluster breaking

excitation energy / temperature

S. Burrello, M. Colonna, R. Wang **[Clusters & fragments within upgraded transport models](#page-0-0)**

 $\mathbf{1}$ $\mathbf{1}$

 QQ

∢ロ ▶ (母 ▶ ∢ ヨ ▶ ∢ ヨ ▶

 Ω

In-medium (Mott) effects and cluster dissolution

- Cluster dissolution approaching saturation from below \bullet ⇒ Mott effect ruled by Pauli-blocking
- -
	-
	-
-
-

[Equation of state and phenomenological models](#page-1-0) [In-medium effects and correlations in the continuum](#page-12-0)

In-medium (Mott) effects and cluster dissolution

- Cluster dissolution approaching saturation from below ⇒ Mott effect ruled by Pauli-blocking
- Generalized relativistic density functional (GRDF) \bullet [S. Typel et al., PRC 81, 015803 (2010)]
	- Microscopic in-medium effects \Rightarrow Mass-shift (Δm)
	- (Effective) binding energy $\rightarrow B^{\rm eff} = B \Delta m$

Parameterization $\Delta m(\rho,\beta,\mathcal{T},\mathsf{P}_{\mathrm{c.m.}})$ \Rightarrow heuristic $\Delta m^{(\mathrm{high})}$ beyond Mott density

S. Burrello, M. Colonna, R. Wang [Clusters & fragments within upgraded transport models](#page-0-0)

 $x = x$

4 17 18 \overline{a} QQ

[Equation of state and phenomenological models](#page-1-0) [In-medium effects and correlations in the continuum](#page-12-0)

In-medium (Mott) effects and cluster dissolution

- Cluster dissolution approaching saturation from below ⇒ Mott effect ruled by Pauli-blocking
- Generalized relativistic density functional (GRDF) \bullet [S. Typel et al., PRC 81, 015803 (2010)]
	- Microscopic in-medium effects \Rightarrow Mass-shift (Δm)
	- (Effective) binding energy $\rightarrow B^{\rm eff} = B \Delta m$

 $\Delta m^{\rm (low)}$ from in-medium MB Schrödinger equation [G. Röpke, NPA 867 (2011) 66–80] Parameterization $\Delta m(\rho,\beta,\mathcal{T},\mathsf{P}_{\mathrm{c.m.}})$ \Rightarrow heuristic $\Delta m^{(\mathrm{high})}$ beyond Mott density

S. Burrello, M. Colonna, R. Wang [Clusters & fragments within upgraded transport models](#page-0-0)

 $x = x$

つくへ

4 17 18

[Equation of state and phenomenological models](#page-1-0) [In-medium effects and correlations in the continuum](#page-12-0)

In-medium (Mott) effects and cluster dissolution

- Cluster dissolution approaching saturation from below ⇒ Mott effect ruled by Pauli-blocking
- Generalized relativistic density functional (GRDF) [S. Typel et al., PRC 81, 015803 (2010)]
	- Microscopic in-medium effects \Rightarrow Mass-shift (Δm)
	- (Effective) binding energy $\rightarrow B^{\rm eff} = B \Delta m$

- $\Delta m^{\rm (low)}$ from in-medium MB Schrödinger equation [G. Röpke, NPA 867 (2011) 66–80]
- Parameterization $\Delta m(\rho,\beta,\mathcal{T},\mathsf{P}_{\text{c.m.}})$ \Rightarrow **heuristic** $\Delta m^{\text{(high)}}$ beyond <mark>Mott density</mark>
	- Bound clusters survive only if $|P_{c.m.}| > P_{Mott}$ (Mott momentum)
	-

S. Burrello, M. Colonna, R. Wang [Clusters & fragments within upgraded transport models](#page-0-0)

K 何 ▶ K 手 ▶ K 手 ▶

4 17 18

 QQ

[Equation of state and phenomenological models](#page-1-0) [In-medium effects and correlations in the continuum](#page-8-0)

In-medium (Mott) effects and cluster dissolution

- Cluster dissolution approaching saturation from below ⇒ Mott effect ruled by Pauli-blocking
- Generalized relativistic density functional (GRDF) \bullet [S. Typel et al., PRC 81, 015803 (2010)]
	- Microscopic in-medium effects \Rightarrow Mass-shift (Δm)
	- (Effective) binding energy $\rightarrow B^{\rm eff} = B \Delta m$

- $\Delta m^{\rm (low)}$ from in-medium MB Schrödinger equation [G. Röpke, NPA 867 (2011) 66–80]
- Parameterization $\Delta m(\rho,\beta,\mathcal{T},\mathsf{P}_{\text{c.m.}})$ \Rightarrow **heuristic** $\Delta m^{\text{(high)}}$ beyond <mark>Mott density</mark> \bullet
	- Bound clusters survive only if $|P_{c.m.}| > P_{Mott}$ (Mott momentum) \bullet
	- Few-body correlations in the **continuum** survive (not included in GRDF) \bullet

S. Burrello, M. Colonna, R. Wang **[Clusters & fragments within upgraded transport models](#page-0-0)**

 QQ

[Short-range correlations within mean-field approaches](#page-14-0) [Dynamics of dilute nuclear matter with light clusters](#page-19-0)

Outline of the presentation

Many-body (MB) correlations and clustering phenomena in nuclear systems

Extended EDF-based models: recent developments and results

- ✏ Unified (thermodynamic) description of few-body correlations and clusters
	- Embedding short-range correlations within relativistic mean-field approaches
	- Global mass-shift parameterization for a multi-purposes EOS \bullet
- ✏ Dynamical approach with light clusters as degrees of freedom (DOF)
	- Quasi-analytical study of dilute NM with light clusters and in-medium effects
	- Characterization of spinodal instability and growth rate of unstable modes

-
-
-

4 17 18

 Ω

[Short-range correlations within mean-field approaches](#page-13-0) [Dynamics of dilute nuclear matter with light clusters](#page-19-0)

Outline of the presentation

² Extended EDF-based models: recent developments and results

- ✏ Unified (thermodynamic) description of few-body correlations and clusters
	- Embedding short-range correlations within relativistic mean-field approaches \bullet
	- Global mass-shift parameterization for a multi-purposes EOS \bullet
-

-
-
-

4 17 18

A 450 W

 \rightarrow \pm

 Ω

[Short-range correlations within mean-field approaches](#page-13-0) [Dynamics of dilute nuclear matter with light clusters](#page-19-0)

Short-range correlations within GRDF model

- NM beyond Mott density: free Fermi gas \bullet \Rightarrow step function in momentum distribution at zero T
- Nucleon knock-out in inelastic electron scattering \bullet [O. Hen et al. (CLAS Coll.), Science 346, 614 (2014)]
	- Smearing of Fermi surface in cold nucleonic matter \bullet
	- High momentum tail (<code>HMT</code>) decreasing with $\sim |{\bf k}|^{-4}$ \bullet
- Nucleon-nucleon short-range correlations (SRCs) \bullet
	- **Tensor** components or repulsive core of nuclear forces
- -
	-
	-

 Ω

4 17 18

[Short-range correlations within mean-field approaches](#page-13-0) [Dynamics of dilute nuclear matter with light clusters](#page-19-0)

Short-range correlations within GRDF model

- NM beyond Mott density: free Fermi gas \Rightarrow step function in momentum distribution at zero T
- Nucleon knock-out in inelastic electron scattering [O. Hen et al. (CLAS Coll.), Science 346, 614 (2014)]
	- **Smearing** of Fermi surface in cold nucleonic matter
	- High momentum tail (<code>HMT</code>) decreasing with $\sim |{\bf k}|^{-4}$
- Nucleon-nucleon short-range correlations (SRCs)
	- **Tensor** components or repulsive core of nuclear forces
- Embedding (effectively) SRCs in GRDF model using quasi-clusters as surrogate \bullet [S. Burrello, S. Typel, EPJA 58, 120 (2022)]
	- Two-body correlations in np^3S_1 channel \Rightarrow quasi-deuteron
	- \approx 20% of nucleons in pairs \Rightarrow Quasi-deuteron mass fraction $X_d(\rho_0) = 0.2$
	- \bullet $\tau = 0 \Rightarrow$ condensate of quasi-deuterons under chemical equilibrium

$$
\mu_d = \mu_n + \mu_p \Rightarrow \left| m_d^* + \Delta m_d^{\text{(high)}} + V_d' = \sqrt{k_n^2 + (m_n^*)^2} + V_n' + \sqrt{k_p^2 + (m_p^*)^2} + V_p' \right|
$$

Interpolation between $\Delta m_{d}^{\rm (low)}$, $\Delta m_{d}^{\rm (high)}$, $\Delta m_{d}(\rho_{0})$

 000

Mass-shift parametrization and impact on EOS

Unified mass-shift parameterization ($\gamma = 1$) [S. Burrello, S. Typel, EPJA 58, 120 (2022)]

$$
X_d(\rho_b) \Leftarrow \Delta m_d(x) = \frac{ax}{1+bx} + cx^{\eta+1} \left[1 - \tanh(x)\right] + fx^{\gamma} \tanh(gx), \qquad x = \frac{\rho_b}{\rho_0}
$$

S. Burrello, M. Colonna, R. Wang [Clusters & fragments within upgraded transport models](#page-0-0)

[Short-range correlations within mean-field approaches](#page-13-0) [Dynamics of dilute nuclear matter with light clusters](#page-19-0)

Mass-shift parametrization and impact on EOS

Unified mass-shift parameterization ($\gamma = 1$) [S. Burrello, S. Typel, EPJA 58, 120 (2022)]

$$
X_d(\rho_b) \Leftarrow \Delta m_d(x) = \frac{ax}{1+bx} + cx^{\eta+1} [1 - \tanh(x)] + fx^{\gamma} \tanh(gx), \qquad x = \frac{\rho_b}{\rho_0}
$$

S. Burrello, M. Colonna, R. Wang [Clusters & fragments within upgraded transport models](#page-0-0)

[Short-range correlations within mean-field approaches](#page-13-0) [Dynamics of dilute nuclear matter with light clusters](#page-19-0)

Outline of the presentation

Extended EDF-based models: recent developments and results

- -
	-

✏ Dynamical approach with light clusters as degrees of freedom (DOF)

- Quasi-analytical study of dilute NM with light clusters and in-medium effects
- Characterization of spinodal instability and growth rate of unstable modes \bullet

-
-
-

4 17 18 **1. 60 m A** The Ω

Kinetic approach for HIC with light-clusters DOF

• Dynamical processes modelizations \Rightarrow **Transport theories**

• Lack of **consistent** description of light and heavier fragments

- Kinetic approach of light-nuclei production in HIC at intermediate energies
	-

 $\left\langle \begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \end{array} \right\rangle$

A The \sim つくへ

[Short-range correlations within mean-field approaches](#page-13-0) [Dynamics of dilute nuclear matter with light clusters](#page-19-0)

 QQ

Kinetic approach for HIC with light-clusters DOF

- **Dynamical processes modelizations** \Rightarrow **Transport theories**
	- Lack of consistent description of light and heavier fragments

• Kinetic approach of light-nuclei production in HIC at intermediate energies Boltzmann–Uehling–Uhlenbeck model + collision integral cut-off (Mott effect) \bullet

[R. Wang, Y.-G. Ma, L.-W. Chen, C. M. Ko, K.-J. Sun, & Z. Zhang, PRC 108, L031601 (2023)]

$$
(\partial_t + \nabla_{\mathbf{p}} \varepsilon_{\tau} \cdot \nabla_{\mathbf{r}} - \nabla_{\mathbf{r}} \varepsilon_{\tau} \cdot \nabla_{\mathbf{p}}) f_{\tau} = I_{\tau}^{\text{coll}}[f_n, f_p, \dots], \qquad \tau = n, p, d, t, h, \alpha
$$

$$
\langle f_N \rangle_A \equiv \int d\mathbf{p} f_N \left(\frac{\mathbf{P}}{A} + \mathbf{p}\right) \rho_A(\mathbf{p}) \le f_A^{\text{cut}}
$$

S. Burrello, M. Colonna, R. Wang **[Clusters & fragments within upgraded transport models](#page-0-0)**

4 17 18

 \mathbf{h} \rightarrow \equiv \sim

 \mathcal{S} ž حی $\mathbf{z}^{\mathbf{z}}$ [Short-range correlations within mean-field approaches](#page-13-0) [Dynamics of dilute nuclear matter with light clusters](#page-19-0)

Kinetic approach for HIC with light-clusters DOF

- Dynamical processes modelizations \Rightarrow Transport theories \bullet
	- Lack of consistent description of light and heavier fragments

• Kinetic approach of light-nuclei production in HIC at intermediate energies Boltzmann–Uehling–Uhlenbeck model + collision integral cut-off (Mott effect) \bullet

[R. Wang, Y.-G. Ma, L.-W. Chen, C. M. Ko, K.-J. Sun, & Z. Zhang, PRC 108, L031601 (2023)]

coll (∂^t + ∇pε^τ · ∇^r − ∇rε^τ · ∇p) f^τ = I [fn, fp, . . .], τ = n, p, d,t, h, α τ Z P cut ⟨f^N ⟩^A ≡ dpf^N + p ρ^A (p) ≤ f A A Our goal Assess if light clusters (from compression phase) affect spinodal instability (expansion stage)

S. Burrello, M. Colonna, R. Wang **[Clusters & fragments within upgraded transport models](#page-0-0)**

[Short-range correlations within mean-field approaches](#page-13-0) [Dynamics of dilute nuclear matter with light clusters](#page-19-0)

∢ロ ▶ (母 ▶ ∢ ヨ ▶ ∢ ヨ ▶

 QQ

Density-dependent (Mott) momentum cut-off

 \bullet Non-relativistic framework \Rightarrow dynamical treatment more easily carried out

$$
\rho_j = g_j \int_{|\mathbf{p}| > \Lambda_j} \frac{d\mathbf{p}}{(2\pi\hbar)^3} f_j \qquad j = n, p, d \qquad (\Lambda_q = 0, \text{ for } q = n, p)
$$

ical **equilibrium** $\Rightarrow X_d = \frac{\rho_d}{n}$ consistent with **benchmark** calculations

[Short-range correlations within mean-field approaches](#page-13-0) [Dynamics of dilute nuclear matter with light clusters](#page-19-0)

 $\left\{ \begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \end{array} \right.$, $\left\{ \begin{array}{ccc} \frac{1}{2} & 0 & 0 \\ 0 & 0 & 0 \end{array} \right.$

つくへ

Density-dependent (Mott) momentum cut-off

• Non-relativistic framework \Rightarrow dynamical treatment more easily carried out Cut-off (Mott) momentum Λ_i for Pauli-blocking \bullet

$$
\rho_j = g_j \int_{|\mathbf{p}| > \Lambda_j} \frac{d\mathbf{p}}{(2\pi\hbar)^3} f_j \qquad j = n, p, d \qquad (\Lambda_q = 0, \text{ for } q = n, p)
$$

Chemical equilibrium $\Rightarrow X_d = \frac{\rho_d}{n}$ consistent with benchmark calculations [cf. Röpke]

Density-dependent (Mott) momentum cut-off

- Non-relativistic framework \Rightarrow dynamical treatment more easily carried out
- **Cut-off** (Mott) momentum Λ_i for Pauli-blocking $\Rightarrow \Lambda_i(\rho_b, T)$ parameterization

$$
\rho_j = g_j \int_{|\mathbf{p}| > \Lambda_j} \frac{d\mathbf{p}}{(2\pi\hbar)^3} f_j \qquad j = n, p, d \qquad (\Lambda_q = 0, \text{ for } q = n, p)
$$

Chemical equilibrium $\Rightarrow X_d = \frac{\rho_d}{n}$ consistent with benchmark calculations [cf. Röpke]

[R. Wang, S. Burrello, M. Colonna, F. Matera, arXiv:2405.02157, accepter for PRC-Letter]

K ロ ト K 何 ト K ヨ ト

 QQ

[Short-range correlations within mean-field approaches](#page-13-0) [Dynamics of dilute nuclear matter with light clusters](#page-19-0)

 QQ

Density-dependent (Mott) momentum cut-off

- Non-relativistic framework \Rightarrow dynamical treatment more easily carried out
- **Cut-off** (Mott) momentum Λ_i for Pauli-blocking $\Rightarrow \Lambda_i(\rho_b, T)$ parameterization

$$
\rho_j = g_j \int_{|\mathbf{p}| > \Lambda_j} \frac{d\mathbf{p}}{(2\pi\hbar)^3} f_j \qquad j = n, p, d \qquad (\Lambda_q = 0, \text{ for } q = n, p)
$$

Chemical equilibrium $\Rightarrow X_d = \frac{\rho_d}{n}$ consistent with benchmark calculations [cf. Röpke] ρ_0

∢ ロ ▶ 《 何 ▶ 《 戸 》

[Short-range correlations within mean-field approaches](#page-13-0) [Dynamics of dilute nuclear matter with light clusters](#page-19-0)

Linearized Vlasov equations for NM+deuterons

• Linear response to collision-less Boltzmann \Rightarrow linearized Vlasov equations for NMd

$$
\partial_t \left(\delta f_j \right) + \nabla_r \left(\delta f_j \right) \cdot \nabla_p \varepsilon_j - \nabla_p f_j \cdot \nabla_r \left(\delta \varepsilon_j \right) = 0 \quad \Rightarrow \quad \delta \rho_j = -\chi_j \sum_l \left(F_0^{jl} + \tilde{F}_\lambda^{jl} \right) \delta \rho_l - \delta_{jd} \sum_l \Phi_\lambda^{dl} \delta \rho_l
$$

- Single-particle energy $\varepsilon_j \equiv \frac{\delta \mathcal{E}}{\mathcal{E}\mathcal{L}G}$ $\frac{\partial \mathcal{C}}{\partial f_j(\mathbf{p})}$ (from EDF $\mathcal{E} = \mathcal{K} + \mathcal{U}$) $\varepsilon_j = \frac{p^2}{2\pi}$ $\frac{\rho^2}{2m_j}+U_j+\tilde{\varepsilon}_j^\lambda \qquad (\tilde{\varepsilon}_j^\lambda \propto \Phi_\lambda^{dj} \sim \frac{\partial \Lambda_d}{\partial \rho_j}$ $\frac{\partial u}{\partial \rho_j}$
- Momentum-independent Skyrme-like interaction ($=$ for bound and free nucleons)

$$
\mathcal{U} = \frac{A}{2} \frac{\rho_b^2}{\rho_0} + \frac{B}{\alpha + 2} \frac{\rho_b^{\alpha + 2}}{\rho_0^{\alpha + 1}} + \frac{C(\rho)}{2} \frac{\rho_3^2}{\rho_0} + \frac{D}{2} (\nabla_r \rho_b)^2 - \frac{D_3}{2} (\nabla_r \rho_3)^2
$$

Density-dependent (Mott) momentum cut-off \Rightarrow extra-terms in both $\delta \rho_i$ and ε_i

$$
\rho_j = g_j \int_{|\mathbf{p}| > \Lambda_j} \frac{d\mathbf{p}}{(2\pi\hbar)^3} f_j \quad j = n, p, d \quad \rightarrow \quad \delta \rho_j(\mathbf{r}, t) = g_j \int_{|\mathbf{p}| > \Lambda_j} \frac{d\mathbf{p}}{(2\pi\hbar)^3} \delta f_j - \delta_{j d} \sum_{l=n, p, d} \Phi_{\lambda}^{d l} \delta \rho_l
$$

 $\mathsf{\Phi}^{\mathsf{d} \mathsf{l}}_\lambda \neq 0 \Rightarrow$ adding i**n-medium** effects for cluster appearance/dissolution in dynamics $\frac{\partial U_j}{\partial \rho_l}, \tilde{F}^{jl}_\lambda \sim \frac{\partial \tilde{\varepsilon}^{\lambda}_j}{\partial \rho_l}$ **Landau** procedure $\left(F^{jl}_0 \sim \frac{\partial U_j}{\partial \alpha}\right)$ $\Big)$ for δf_j \sim \sum $\delta f_j^{\,\mathbf{k}}\,e^{i(\mathbf{k}\cdot\mathbf{r}-\omega t)}$ $\partial \rho$ k 299

S. Burrello, M. Colonna, R. Wang [Clusters & fragments within upgraded transport models](#page-0-0)

[Short-range correlations within mean-field approaches](#page-13-0) [Dynamics of dilute nuclear matter with light clusters](#page-19-0)

Dispersion relation and spinodal instability region

• Solving linearized Vlasov equations \Rightarrow dispersion relation $\omega = \omega(k)$

$$
\delta \rho_j = -\chi_j \sum_l \left(F^{jl}_0 + \tilde{F}^{jl}_\lambda \right) \delta \rho_l - \delta_{jd} \sum_l \Phi^{dl}_\lambda \delta \rho_l
$$

 $\bullet \ \omega = \text{Im}(\omega) \Leftrightarrow \text{unstable mode (spinodal region)}$

イロメ イ母メ イヨメ イヨ

つくへ

S. Burrello, M. Colonna, R. Wang [Clusters & fragments within upgraded transport models](#page-0-0)

[Short-range correlations within mean-field approaches](#page-13-0) [Dynamics of dilute nuclear matter with light clusters](#page-19-0)

Dispersion relation and spinodal instability region

• Solving linearized Vlasov equations \Rightarrow dispersion relation $\omega = \omega(k)$

$$
\delta \rho_j = -\chi_j \sum_l \left(F^{jl}_0 + \tilde{F}^{jl}_\lambda \right) \delta \rho_l - \delta_{jd} \sum_l \Phi^{dl}_\lambda \delta \rho_l
$$

 $\bullet \ \omega = \text{Im}(\omega) \Leftrightarrow \text{unstable mode (spinodal region)}$

[R. Wang, S. Burrello, M. Colonna, F. Matera, arXiv:2405.02157]

つくい

4 17 18

[Short-range correlations within mean-field approaches](#page-13-0) [Dynamics of dilute nuclear matter with light clusters](#page-19-0)

Dispersion relation and spinodal instability region

• Solving linearized Vlasov equations \Rightarrow dispersion relation $\omega = \omega(k)$

$$
\delta \rho_j = -\chi_j \sum_l \left(F^{jl}_0 + \tilde{F}^{jl}_\lambda \right) \delta \rho_l - \delta_{jd} \sum_l \Phi^{dl}_\lambda \delta \rho_l
$$

 $\bullet \ \omega = \text{Im}(\omega) \Leftrightarrow \text{unstable mode (spinodal region)}$

[R. Wang, S. Burrello, M. Colonna, F. Matera, arXiv:2405.02157]

 $\bullet \ \omega = 0$ (Lindhard functions $\chi_i = 1$) \Rightarrow border

S. Burrello, M. Colonna, R. Wang **[Clusters & fragments within upgraded transport models](#page-0-0)**

一本 三 下

つくへ

[Short-range correlations within mean-field approaches](#page-13-0) [Dynamics of dilute nuclear matter with light clusters](#page-19-0)

Dispersion relation and spinodal instability region

• Solving linearized Vlasov equations \Rightarrow dispersion relation $\omega = \omega(k)$

$$
\delta \rho_j = -\chi_j \sum_l \left(F^{jl}_0 + \tilde{F}^{jl}_\lambda \right) \delta \rho_l - \delta_{jd} \sum_l \Phi^{dl}_\lambda \delta \rho_l
$$

 $\bullet \ \omega = \text{Im}(\omega) \Leftrightarrow \text{unstable mode (spinodal region)}$

 \rightarrow

[R. Wang, S. Burrello, M. Colonna, F. Matera, arXiv:2405.02157]

 $\bullet \ \omega = 0$ (Lindhard functions $\chi_i = 1$) \Rightarrow border

In-medium effects in dynamics

• Dawn of meta-stable region

[G. Röpke et al, NPA 970, 224 (2018)]

10⁻¹ • Slowdown of instability rate

4 何 ト 4 S. Burrello, M. Colonna, R. Wang **[Clusters & fragments within upgraded transport models](#page-0-0)**

[Short-range correlations within mean-field approaches](#page-13-0) [Dynamics of dilute nuclear matter with light clusters](#page-19-0)

Dispersion relation and spinodal instability region

• Solving linearized Vlasov equations \Rightarrow dispersion relation $\omega = \omega(k)$

$$
\delta \rho_j = -\chi_j \sum_l \left(F^{jl}_0 + \tilde{F}^{jl}_\lambda \right) \delta \rho_l - \delta_{jd} \sum_l \Phi^{dl}_\lambda \delta \rho_l
$$

 $\bullet \ \omega = \text{Im}(\omega) \Leftrightarrow \text{unstable mode (spinodal region)}$

[R. Wang, S. Burrello, M. Colonna, F. Matera, arXiv:2405.02157]

 $Im(\omega) \Rightarrow$ growth rate of density fluctuations \bullet

S. Burrello, M. Colonna, R. Wang [Clusters & fragments within upgraded transport models](#page-0-0)

[Short-range correlations within mean-field approaches](#page-13-0) [Dynamics of dilute nuclear matter with light clusters](#page-19-0)

Instability direction: "distillation" mechanism

- **Direction of instability** in space of density fluctuations: $\frac{\delta \rho_S}{\delta \rho_d} (\rho_S = \rho_n + \rho_p)$ 0
	- $\delta\rho$ s $\frac{\partial \rho_S}{\partial \rho_d} \gtrless 0 \Rightarrow$ Nucleons and deuterons fluctuations move in (out) of phase

NMd with no in-medium effects: \bullet

- Favored growth of instabilities
- **Cooperation** to form fragments
- -
	-

つくへ

[Short-range correlations within mean-field approaches](#page-13-0) [Dynamics of dilute nuclear matter with light clusters](#page-19-0)

Instability direction: "distillation" mechanism

- **Direction of instability** in space of density fluctuations: $\frac{\delta \rho_S}{\delta \rho_d} (\rho_S = \rho_n + \rho_p)$ 0
	- $\delta\rho$ s $\frac{\partial \rho_S}{\partial \rho_d} \gtrless 0 \Rightarrow$ Nucleons and deuterons fluctuations move in (out) of phase

- **O** NMd with no in-medium effects:
	- Favored growth of instabilities
	- **Cooperation** to form fragments
- NMd with in-medium effects:
	- Deuterons move to **low densities**
	- They might be separately emitted \Rightarrow "distillation" mechanism

K ロ ▶ K 何 ▶ K ヨ ▶ K ヨ ▶ ...

 QQ

[Short-range correlations within mean-field approaches](#page-13-0) [Dynamics of dilute nuclear matter with light clusters](#page-19-0)

Outline of the presentation

- -
	-
-

³ Further developments and outlooks

- Connection between hydrodynamical and linearized Vlasov approach
- Extensive numerical calculations of the dynamics with light clusters \bullet
- Consistent descriptions of fragment formation mechanisms in heavy-ion collisions ٠

 $\left(1 - \frac{1}{2} + \frac{1}{2$

つくい

[Short-range correlations within mean-field approaches](#page-13-0) [Dynamics of dilute nuclear matter with light clusters](#page-19-0)

Further developments and outlooks

- $\sf{Scaling}$ factor for $\sf{deuteron}$ coupling strenght in $\mathcal{U}(\rho)$ $(\sf{with}~\rho = \sum_j A_j \eta_j \rho_j)$ \bullet
- $\eta_d = 1 \Rightarrow$ nucleons **bound** in deuterons feel the same potential as free nucleons
- $\eta_d < 1$ \Rightarrow in-medium effects and description of chemical equilibrium constant

[L. Qin et al., PRL 108, 172701 (2012); R. Bougault et al., J. Phys. G 47, 025103 (2020)]

 \bullet Alternative framework for spinodal instability \Rightarrow Hydrodynamical approach

4 17 18

K 何 ▶ K 手 ▶ K 手

つくへ

[Short-range correlations within mean-field approaches](#page-13-0) [Dynamics of dilute nuclear matter with light clusters](#page-19-0)

 $\langle \bigcap \mathbb{P} \rangle$ \rightarrow $\langle \bigcap \mathbb{P} \rangle$ \rightarrow $\langle \bigcap \mathbb{P} \rangle$

 QQ

Further developments and outlooks

- $\sf{Scaling}$ factor for $\sf{deuteron}$ coupling strenght in $\mathcal{U}(\rho)$ $(\sf{with}~\rho = \sum_j A_j \eta_j \rho_j)$ \bullet
- $\eta_d = 1 \Rightarrow$ nucleons **bound** in deuterons feel the same potential as free nucleons
- $\eta_d < 1$ \Rightarrow in-medium effects and description of chemical equilibrium constant

[L. Qin et al., PRL 108, 172701 (2012); R. Bougault et al., J. Phys. G 47, 025103 (2020)]

• Alternative framework for spinodal instability \Rightarrow **Hydrodynamical** approach \Rightarrow hydrodynamics vs linearized Vlasov with density-dependent cut-off

[S. Burrello, M. Colonna, R. Wang, in preparation]

4 17 18

Further developments and outlooks

- $\sf{Scaling}$ factor for $\sf{deuteron}$ coupling strenght in $\mathcal{U}(\rho)$ $(\sf{with}~\rho = \sum_j A_j \eta_j \rho_j)$ \bullet
- $\eta_d = 1 \Rightarrow$ nucleons **bound** in deuterons feel the same potential as free nucleons
- $\eta_d < 1$ \Rightarrow in-medium effects and description of chemical equilibrium constant

[L. Qin et al., PRL 108, 172701 (2012); R. Bougault et al., J. Phys. G 47, 025103 (2020)]

• Alternative framework for spinodal instability \Rightarrow **Hydrodynamical** approach \Rightarrow hydrodynamics vs linearized Vlasov with density-dependent cut-off

[S. Burrello, M. Colonna, R. Wang, in preparation]

Work in progress

- **Extensive calculations (other light clusters, ANM)**
	- Different parameterizations for interaction & cut-off
- Consistent description of HIC fragmentation mechanisms \bullet

イロト イ押 トイヨ トイヨ トー

 QQ

Beyond quasi-analytical ⇒ numerical calculations

[Short-range correlations within mean-field approaches](#page-13-0) [Dynamics of dilute nuclear matter with light clusters](#page-19-0)

Numerical Vlasov solution: preliminary results

Density fluctuations $\delta \rho_n(t)$ (exponentially) increase \Rightarrow spinodal instability \bullet

• No constant growth factor
$$
\tilde{\Gamma}(t) = \ln \left[\frac{\delta \rho_n(t)}{\delta \rho_n(t=0)} \right] / t \Rightarrow
$$
 not uniform system

$$
S(r_i - r) = \frac{1}{(nl/2)^6} g(\Delta x) g(\Delta y) g(\Delta z)
$$

$$
g(q) = \left(\frac{nl}{2} - |q|\right) \theta \left(\frac{nl}{2} - |q|\right)
$$

• $n \rightarrow 0 \Rightarrow$ quasi-analytical linearized results

IN S. Burrello, M. Colonna, R. Wang **[Clusters & fragments within upgraded transport models](#page-0-0)**

モミ

4 ロ ▶ (何

 QQ

[Short-range correlations within mean-field approaches](#page-13-0) [Dynamics of dilute nuclear matter with light clusters](#page-19-0)

Numerical Vlasov solution: preliminary results

[Short-range correlations within mean-field approaches](#page-13-0) [Dynamics of dilute nuclear matter with light clusters](#page-19-0)

Outline of the presentation

- -
	-

-
-
-

Summary

4 17 18 **A 450 W** \rightarrow \pm \sim つくい

[Short-range correlations within mean-field approaches](#page-13-0) [Dynamics of dilute nuclear matter with light clusters](#page-19-0)

イロメ イ押メ イヨメ イヨメ

 QQ

性

Final remarks and conclusions

Main topic

- **•** Description of correlations & clustering with phenomenological EDF models
- **Dynamics of dilute NM** with light clusters DOF and local in-medium effects

Main results

- **•** Unified mass-shift parametrization for deuterons & **SRCs** and impact on **EOS**
- Role of clusters on SNM spinodal instability and fragmentation dynamics \bullet
- **IMPACT 1.4** Impact of in-medium effects on growth rates and distillation mechanism

Further developments and outlooks

- Screening effects for bound nucleons and connection with hydrodynamics
- **•** Extension to **ANM** with other light clusters and effective interaction
- Numerical calculations & consistent description of HIC fragment formation

[Short-range correlations within mean-field approaches](#page-13-0) [Dynamics of dilute nuclear matter with light clusters](#page-19-0)

 QQ

Final remarks and conclusions

Main topic

- **•** Description of correlations & clustering with phenomenological EDF models
- **Dynamics of dilute NM with light clusters DOF and local in-medium effects**

Main results

- Unified mass-shift parametrization for deuterons & SRCs and impact on EOS
- Role of clusters on SNM spinodal instability and fragmentation dynamics
- **Impact of in-medium effects on growth rates and distillation mechanism**

Further developments and outlooks

- Screening effects for bound nucleons and connection with hydrodynamics
- **•** Extension to **ANM** with other light clusters and effective interaction
- Numerical calculations & consistent description of HIC fragment formation

THANK YOU FOR YOUR AT[TE](#page-42-0)[N](#page-43-0)[T](#page-41-0)[I](#page-42-0)[O](#page-43-0)[N](#page-18-0)[!](#page-19-0)

S. Burrello, M. Colonna, R. Wang **[Clusters & fragments within upgraded transport models](#page-0-0)**