Microscopic determination of the isospin symmetry breaking energy density functional

内藤 智也 (Tomoya Naito)

RIKEN iTHEMS Program, JAPAN Department of Physics, Graduate School of Science, The University of Tokyo, JAPAN

09 September 2024

XIIth International Symposium on Nuclear Symmetry Energy (NuSym2024)

Grand Accélérateur National d'Ions Lourds (GANIL), Caen, FRANCE

MLPhys Foundation of "Machine Learning Physics" 学習物理学の創成

Tomoya Naito (RIKEN/U. Tokyo)

QCD-CSB

Isospin symmetry breaking of nuclear interaction

• Nuclear interaction: almost isospin symmetric

 $v_{pp}^{T=1} \simeq v_{pn}^{T=1} \simeq v_{nn}^{T=1}$

Miller, Opper, and Stephenson. Annu. Rev. Nucl. Part. Sci. 56, 253 (2006)

Tomoya Naito (RIKEN/U. Tokyo)

QCD-CSB

Isospin symmetry breaking of nuclear interaction

• Nuclear interaction: *almost* isospin symmetric

 $v_{pp}^{T=1}\simeq v_{pn}^{T=1}\simeq v_{nn}^{T=1}$

- Charge symmetry breaking (CSB)
 - Difference between *p*-*p* int. and *n*-*n* int.

$$v_{\text{CSB}} \equiv v_{nn}^{T=1} - v_{pp}^{T=1} \sim \tau_{zi} + \tau_{zj}$$

- Originates mainly from mass difference of nucleons $(m_p \neq m_n)$ and $\pi^0 - \eta \& \rho^0 - \omega$ mixings in meson-exchange process
- Contribute to β term (β^{2n+1} terms) in nuclear EoS
- Charge independence breaking (CIB)
 - Difference between like-particle int. and diff.-particle int.

$$v_{\rm CIB} \equiv \frac{v_{nn}^{T=1} + v_{pp}^{T=1}}{2} - v_{np}^{T=1} \sim \tau_{zi} \tau_{zj}$$

- Originates mainly from mass difference of pions (m_{π⁰} ≠ m_{π[±]})
- Contribute to SNM and β^2 term (β^{2n} terms) in nuclear EoS

Miller, Opper, and Stephenson. Annu. Rev. Nucl. Part. Sci. 56, 253 (2006)

Isospin symmetry breaking of atomic nuclei

- Isospin symmetry of atomic nuclei is *slightly* broken due to
 - Coulomb interaction
 - Isospin symmetry breaking (ISB) terms of nuclear interaction
- Different properties of mirror nuclei
 - Mass (Okamoto-Nolen-Schiffer anomaly)
 - Ground-state spin, shape, ...
- Isobaric analog energy
- Superallowed β decay
- Finite (negative) neutron-skin thickness $\Delta R_{np} = R_n R_p$ of N = Z nuclei

Okamoto. *Phys. Lett.* **11**, 150 (1964) Nolen and Schiffer. *Annu. Rev. Nucl. Sci.* **19**, 471 (1969) Hoff *et al. Nature* **580**, 52 (2020)

Wimmer et al. Phys. Rev. Lett. 126, 072501 (2021)

Isospin symmetry breaking of atomic nuclei

- Isospin symmetry of atomic nuclei is *slightly* broken due to
 - Coulomb interaction
 - Isospin symmetry breaking (ISB) terms of nuclear interaction
- Different properties of mirror nuclei
 - Mass (Okamoto-Nolen-Schiffer anomaly)
 - Ground-state spin, shape, ...
- Isobaric analog energy
- Superallowed β decay
- Finite (negative) neutron-skin thickness $\Delta R_{np} = R_n R_p$ of N = Z nuclei

Okamoto. *Phys. Lett.* **11**, 150 (1964) Nolen and Schiffer. *Annu. Rev. Nucl. Sci.* **19**, 471 (1969) Hoff *et al. Nature* **580**, 52 (2020)

Wimmer et al. Phys. Rev. Lett. 126, 072501 (2021)

Most effective interactions do not include ISB terms

Isospin symmetry breaking of atomic nuclei

- Isospin symmetry of atomic nuclei is *slightly* broken due to
 - Coulomb interaction
 - Isospin symmetry breaking (ISB) terms of nuclear interaction
- Different properties of mirror nuclei
 - Mass (Okamoto-Nolen-Schiffer anomaly)
 - Ground-state spin, shape, ...
- Isobaric analog energy
- Superallowed β decay
- Finite (negative) neutron-skin thickness $\Delta R_{np} = R_n R_p$ of N = Z nuclei

Okamoto. *Phys. Lett.* **11**, 150 (1964) Nolen and Schiffer. *Annu. Rev. Nucl. Sci.* **19**, 471 (1969) Hoff *et al. Nature* **580**, 52 (2020)

Wimmer et al. Phys. Rev. Lett. 126, 072501 (2021)

Most effective interactions do not include ISB terms

→ Nuclear structure calculation with ISB terms is important to understand these properties quantitatively

Skyrme-like ISB interaction

$$\begin{split} & \mathcal{V}_{\text{Sky}}^{\text{CSB}}\left(\mathbf{r}\right) = \left\{s_{0}\left(1+y_{0}P_{\sigma}\right)\delta\left(\mathbf{r}\right) + \frac{s_{1}}{2}\left(1+y_{1}P_{\sigma}\right)\left[\mathbf{k}^{\dagger 2}\delta\left(\mathbf{r}\right) + \delta\left(\mathbf{r}\right)\mathbf{k}^{2}\right] + s_{2}\left(1+y_{2}P_{\sigma}\right)\mathbf{k}^{\dagger}\cdot\delta\left(\mathbf{r}\right)\mathbf{k}\right\}\frac{\tau_{z1}+\tau_{z2}}{4} \\ & \mathcal{V}_{\text{Sky}}^{\text{CIB}}\left(\mathbf{r}\right) = \left\{u_{0}\left(1+z_{0}P_{\sigma}\right)\delta\left(\mathbf{r}\right) + \frac{u_{1}}{2}\left(1+z_{1}P_{\sigma}\right)\left[\mathbf{k}^{\dagger 2}\delta\left(\mathbf{r}\right) + \delta\left(\mathbf{r}\right)\mathbf{k}^{2}\right] + u_{2}\left(1+z_{2}P_{\sigma}\right)\mathbf{k}^{\dagger}\cdot\delta\left(\mathbf{r}\right)\mathbf{k}\right\}\frac{\tau_{z1}\tau_{z2}}{2} \\ & \mathcal{E}_{\text{CSB}}^{\text{H}} = \frac{s_{0}}{4}\left(1+\frac{y_{0}}{2}\right)\left(\rho_{n}^{2}-\rho_{p}^{2}\right) + \frac{1}{8}\left[s_{1}\left(1+\frac{y_{1}}{2}\right) + s_{2}\left(1+\frac{y_{2}}{2}\right)\right]\left(\rho_{n}\tau_{n}-\rho_{p}\tau_{p}\right) \\ & - \frac{1}{32}\left[3s_{1}\left(1+\frac{y_{1}}{2}\right) - s_{2}\left(1+\frac{y_{2}}{2}\right)\right]\left(\rho_{n}\Delta\rho_{n}-\rho_{p}\Delta\rho_{p}\right) - \frac{1}{32}\left(s_{1}y_{1}+s_{2}y_{2}\right)\left(\mathbf{J}_{n}^{2}-\mathbf{J}_{p}^{2}\right) \\ & \mathcal{E}_{\text{CSB}}^{\text{x}} = -\frac{s_{0}}{4}\left(\frac{1}{2}+y_{0}\right)\left(\rho_{n}^{2}-\rho_{p}^{2}\right) - \frac{1}{8}\left[s_{1}\left(\frac{1}{2}+y_{1}\right) - s_{2}\left(\frac{1}{2}+y_{2}\right)\right]\left(\rho_{n}\tau_{n}-\rho_{p}\tau_{p}\right) \\ & + \frac{1}{32}\left[3s_{1}\left(\frac{1}{2}+y_{1}\right) + s_{2}\left(\frac{1}{2}+y_{2}\right)\right]\left(\rho_{n}\Delta\rho_{n}-\rho_{p}\Delta\rho_{p}\right) + \frac{1}{32}\left(s_{1}-s_{2}\right)\left(\mathbf{J}_{n}^{2}-\mathbf{J}_{p}^{2}\right) \\ & \mathcal{E}_{\text{CIB}}^{\text{H}} = \frac{u_{0}}{4}\left(1+\frac{z_{0}}{2}\right)\left(\rho_{n}-\rho_{p}\right)^{2} + \frac{1}{8}\left[u_{1}\left(1+\frac{z_{1}}{2}\right) + u_{2}\left(1+\frac{z_{2}}{2}\right)\right]\left(\rho_{n}-\rho_{p}\right)\left(\Delta\rho_{n}-\rho_{p}\right)\left(\tau_{n}-\tau_{p}\right) \\ & - \frac{1}{32}\left[3u_{1}\left(1+\frac{z_{1}}{2}\right) - u_{2}\left(1+\frac{z_{2}}{2}\right)\right]\left(\rho_{n}-\rho_{p}\right)\left(\Delta\rho_{n}-\Delta\rho_{p}\right) - \frac{1}{32}\left(u_{1}z_{1}+u_{2}z_{2}\right)\left(\mathbf{J}_{n}-\mathbf{J}_{p}\right)^{2} \\ & \mathcal{E}_{\text{CIB}}^{\text{x}} = -\frac{u_{0}}{4}\left(\frac{1}{2}+z_{0}\right)\left(\rho_{n}^{2}+\rho_{p}^{2}\right) - \frac{1}{8}\left[u_{1}\left(\frac{1}{2}+z_{1}\right) - u_{2}\left(\frac{1}{2}+z_{2}\right)\right]\left(\rho_{n}\tau_{n}+\rho_{p}\tau_{p}\right) \\ & + \frac{1}{32}\left[3u_{1}\left(\frac{1}{2}+z_{1}\right) + u_{2}\left(\frac{1}{2}+z_{2}\right)\right]\left(\rho_{n}\Delta\rho_{n}+\rho_{p}\Delta\rho_{p}\right) + \frac{1}{32}\left(u_{1}-u_{2}\right)\left(\mathbf{J}_{n}^{2}+\mathbf{J}_{p}^{2}\right) \\ & \text{Sagawa, Colò, Roca-Maza, and Niu. Eur. Phys. J. A 55, 227 (2019) \right] \right\}$$

Naito, Colò, Roca-Maza, and Sagawa. Phys. Rev. C 107, 064302 (2023)

ISB effects on isobaric analog energy and neutron-skin thickness

• There is a correlation between E_{IAS} and ΔR_{np} of ²⁰⁸Pb

Without ISB terms,

exp. values of E_{IAS} and ΔR_{np} cannot be described at the same time

Roca-Maza, Colò, and Sagawa. Phys. Rev. Lett. 120, 202501 (2018)

ISB effects on isobaric analog energy and neutron-skin thickness

- There is a correlation between E_{IAS} and ΔR_{np} of ^{208}Pb
- Without ISB terms, exp. values of E_{IAS} and ΔR_{np} cannot be described at the same time
- With ISB terms, exp. values of E_{IAS} and ΔR_{np} can be described at the same time

(before PREX-II data)

Roca-Maza, Colò, and Sagawa. Phys. Rev. Lett. 120, 202501 (2018)

Neutron-skin thickness of ²⁰⁸Pb and nuclear equation of state

$$\frac{E}{A} = \varepsilon_0 + \frac{K_\infty}{2} \left(\frac{\rho - \rho_0}{3\rho_0}\right)^2 + \ldots + \left|J + J\right|^2$$

$$L\left(\frac{\rho-\rho_0}{3\rho_0}\right) + \frac{K_{\rm sym}}{2}\left(\frac{\rho-\rho_0}{3\rho_0}\right)^2 \bigg]\beta^2$$

- $L \text{ vs } \Delta R_{np}$ correlation estimated by SAMi-J family
- On top of SAMi-J family, ISB terms are considered
- SAMi-ISB strengths is used CSB $s_0 = -26.3 \text{ MeV fm}^3$ CIB $u_0 = 25.8 \text{ MeV fm}^3$

 $y_0 = z_0 = -1$ (the others are zero)

- Difference between estimated L_{full} without & that with ISB is 11.1 MeV (CSB contrib. 13.9 MeV, CIB contrib. -2.7 MeV) \rightarrow Change of L is 12 MeV
- Note: These values depend on the strengths of ISB terms
 →

Naito, Colò, Liang, Roca-Maza, and Sagawa. Phys. Rev. C 107, 064302 (2023)

Neutron-skin thickness of ²⁰⁸Pb and nuclear equation of state

$$\frac{E}{A} = \varepsilon_0 + \frac{K_\infty}{2} \left(\frac{\rho - \rho_0}{3\rho_0}\right)^2 + \ldots + \left|J + J\right|^2$$

$$L\left(\frac{\rho-\rho_0}{3\rho_0}\right) + \frac{K_{\rm sym}}{2}\left(\frac{\rho-\rho_0}{3\rho_0}\right)^2 \bigg]\beta^2$$

- $L \text{ vs } \Delta R_{np}$ correlation estimated by SAMi-J family
- On top of SAMi-J family, ISB terms are considered
- SAMi-ISB strengths is used CSB $s_0 = -26.3 \text{ MeV fm}^3$ CIB $u_0 = 25.8 \text{ MeV fm}^3$

 $y_0 = z_0 = -1$ (the others are zero)

- Difference between estimated L_{full} without & that with ISB is 11.1 MeV (CSB contrib. 13.9 MeV, CIB contrib. -2.7 MeV) \rightarrow Change of L is 12 MeV
- Note: These values depend on the strengths of ISB terms
 → Determination of s_j and u_j are crucial!

Naito, Colò, Liang, Roca-Maza, and Sagawa. Phys. Rev. C 107, 064302 (2023)

Tomoya Naito (RIKEN/U. Tokyo)

Determination of Skyrme-like CSB parameters

Here, we assume $y_0 = y_1 = -1$ and $y_2 = +1$

Phenomenological determination

$$O(10)$$
 MeV fm³

O(1) MeV fm³

- $s_0 = -26.3 \text{ MeV fm}^3$ (IAE of ²⁰⁸Pb)
- $s_0 \simeq -10 \,\mathrm{MeV} \,\mathrm{fm}^3$ (MDE and TDE)
- $s_0 \simeq 22 \text{ MeV fm}^3$, $s_1 \simeq -28 \text{ MeV fm}^5$, $s_2 \simeq -16 \text{ MeV fm}^5$ (MDE and TDE)
- Extract from ab initio data
 - $s_0 \simeq -2 \text{ MeV fm}^3$ (ΔE_{tot} of ⁴⁸Ca-⁴⁸Ni, CC & χ EFT)
 - $s_0 \simeq -3 \,\mathrm{MeV} \,\mathrm{fm}^3$ (ΔE_{tot} of ${}^{10}\mathrm{Be}{}^{-10}\mathrm{C}$, VMC & AV18)

Naito, Colò, Liang, Roca-Maza, and Sagawa. Nuovo Cim. C 47, 52 (2024)

Determination of Skyrme-like CSB parameters

Here, we assume $y_0 = y_1 = -1$ and $y_2 = +1$

Phenomenological determination

O(10) MeV fm³

O(1) MeV fm³

- $s_0 = -26.3 \text{ MeV fm}^3$ (IAE of ²⁰⁸Pb)
- $s_0 \simeq -10 \,\mathrm{MeV} \,\mathrm{fm}^3$ (MDE and TDE)
- $s_0 \simeq 22 \text{ MeV fm}^3$, $s_1 \simeq -28 \text{ MeV fm}^5$, $s_2 \simeq -16 \text{ MeV fm}^5$ (MDE and TDE)
- Extract from ab initio data
 - $s_0 \simeq -2 \text{ MeV fm}^3$ (ΔE_{tot} of ⁴⁸Ca-⁴⁸Ni, CC & χ EFT)
 - $s_0 \simeq -3 \,\mathrm{MeV} \,\mathrm{fm}^3$ (ΔE_{tot} of ${}^{10}\mathrm{Be}{}^{-10}\mathrm{C}$, VMC & AV18)
- \rightarrow To understand this deviation,

we attempted to determine CSB parameters using fundamental theory

QCD sum rule

Naito, Colò, Liang, Roca-Maza, and Sagawa. Nuovo Cim. C 47, 52 (2024)

• Chiral condensation $\langle \bar{q}q \rangle / \langle \bar{q}q \rangle_0$ is related to *p*-*n* mass difference

$$\Delta_{np}(\rho) = C_1 \left(\frac{\langle \overline{q}q \rangle_{\rho}}{\langle \overline{q}q \rangle_0} \right)^{1/3} - C_2 \qquad C_1 = -a\gamma \qquad \gamma = \frac{\langle \overline{d}d \rangle_0}{\langle \overline{u}u \rangle_0} - 1$$

obtained by QCD sum rule ($\gamma = -(7.8^{+3.7}_{-1.8}) \times 10^{-3}$, $C_1 = 5.24^{+2.48}_{-1.21}$ MeV)

• $\langle \bar{q}q \rangle / \langle \bar{q}q \rangle_0$ can be calculated by chiral perturbation theory

$$\frac{\langle \overline{q}q \rangle_{\rho}}{\langle \overline{q}q \rangle_{0}} \simeq 1 + k_{1} \frac{\rho}{\rho_{0}} + k_{2} \left(\frac{\rho}{\rho_{0}}\right)^{5/3} + \dots \qquad k_{1} = -\frac{\sigma_{\pi N} \rho_{0}}{f_{\pi}^{2} m_{\pi}^{2}} \qquad k_{2} = -k_{1} \frac{3k_{\rm F0}^{2}}{10m_{N}^{2}}$$

 $\sigma_{\pi N}$: π -N sigma term, f_{π} : pion decay constant

Hatsuda, Høgaasen, and Prakash. Phys. Rev. Lett. 66, 2851 (1991) Goda and Jido. Phys. Rev. C 88, 065204 (2013)

Mirror nuclei mass difference in local density approximation obtained by

- Skyrme HF calculation with *s*₀, *s*₁, and *s*₂
- QCD sum rule and the local density approximation

The mass difference originating from ISB reads

$$\Delta_{\text{Skyrme}} \simeq -\frac{s_0 \left(1 - y_0\right)}{4} \rho - \frac{1}{10} \left(\frac{3\pi^2}{2}\right)^{2/3} \left[s_1 \left(1 - y_1\right) + 3s_2 \left(1 + y_2\right)\right] \rho^{5/3}$$

$$\Delta_{\text{QCDSR}} = C_1 \left[1 - \left(\frac{\langle \overline{q}q \rangle_{\rho}}{\langle \overline{q}q \rangle_0}\right)^{1/3}\right] \simeq C_1 \left\{1 - \left[1 + k_1 \frac{\rho}{\rho_0} + k_2 \left(\frac{\rho}{\rho_0}\right)^{5/3}\right]^{1/3}\right\}$$

$$\simeq C_1 \left[\frac{1}{3} \frac{\sigma_{\pi N}}{f_{\pi}^2 m_{\pi}^2} \rho - \frac{1}{10} \left(\frac{3\pi^2}{2}\right)^{2/3} \frac{1}{m_N^2} \frac{\sigma_{\pi N}}{f_{\pi}^2 m_{\pi}^2} \rho^{5/3}\right]$$
obtain

We obtain

$$s_0 (1 - y_0) \simeq -\frac{4}{3} \frac{C_1 \sigma_{\pi N}}{f_\pi^2 m_\pi^2} = -15.5^{+8.8}_{-12.5} \text{ MeV fm}^3$$

$$s_1 (1 - y_1) + 3s_2 (1 + y_2) \simeq \frac{1}{m_N^2} \frac{C_1 \sigma_{\pi N}}{f_\pi^2 m_\pi^2} = 0.52^{+0.42}_{-0.29} \text{ MeV fm}^5$$

(Error bar is due to $\sigma_{\pi N}$)

The mass difference originating from ISB reads

$$\Delta_{\text{Skyrme}} \simeq -\frac{s_0 \left(1 - y_0\right)}{4} \rho - \frac{1}{10} \left(\frac{3\pi^2}{2}\right)^{2/3} \left[s_1 \left(1 - y_1\right) + 3s_2 \left(1 + y_2\right)\right] \rho^{5/3}$$

$$\Delta_{\text{QCDSR}} = C_1 \left[1 - \left(\frac{\langle \overline{q}q \rangle_{\rho}}{\langle \overline{q}q \rangle_0}\right)^{1/3}\right] \simeq C_1 \left\{1 - \left[1 + k_1 \frac{\rho}{\rho_0} + k_2 \left(\frac{\rho}{\rho_0}\right)^{5/3}\right]^{1/3}\right\}$$

$$\simeq C_1 \left[\frac{1}{3} \frac{\sigma_{\pi N}}{f_{\pi}^2 m_{\pi}^2} \rho - \frac{1}{10} \left(\frac{3\pi^2}{2}\right)^{2/3} \frac{1}{m_N^2} \frac{\sigma_{\pi N}}{f_{\pi}^2 m_{\pi}^2} \rho^{5/3}\right]$$
obtain

We obtain

$$s_0 (1 - y_0) \simeq -\frac{4}{3} \frac{C_1 \sigma_{\pi N}}{f_\pi^2 m_\pi^2} = -15.5^{+8.8}_{-12.5} \text{ MeV fm}^3$$
$$(1 - y_1) + 3s_2 (1 + y_2) \simeq \frac{1}{m_N^2} \frac{C_1 \sigma_{\pi N}}{f_\pi^2 m_\pi^2} = 0.52^{+0.42}_{-0.29} \text{ MeV fm}^5$$

 $s_1 \& s_2$ terms may be small

(Error bar is due to $\sigma_{\pi N}$)

Sagawa, Naito, Roca-Maza, and Hatsuda. Phys. Rev. C 109, L011302 (2024)

Tomoya Naito (RIKEN/U. Tokyo)

S1

ONS anomaly and QCD-CSB interaction

- "Extra" contribution is not enough to describe ΔE
 - Higher-order correction for the Coulomb interaction
 - Change of kinetic energy due to m_p ≠ m_n
- QCD-CSB interaction describe ΔE quite nicely
 - \rightarrow ONS anomaly may be solved?

Conclusion

- $O(\beta)$ term originating from CSB in EoS is related to
 - the restoration of the chiral symmetry breaking
 - effective mass (self-energy) of nucleons in medium
 - \rightarrow QCD sum rule approach works to understand it
- QCD-CSB interaction can describe ONS anomaly

Perspectives

- How abount CIB interaction, originating from $m_{\pi^0} \neq m_{\pi^{\pm}}$? Pion is NG boson \rightarrow in-medium effect is important
- Ongoing
 - QCD-based CIB interaction (w/ Colò, Hatsuda, Roca-Maza, Sagawa)
 - Relativistic CSB EDF (w/ Cheoun, Sagawa, Tanimura)
- Ultimate goal
 - "Complete & accurate" nuclear EDF
 - Can we understand "medium effect" from QCD?

Conclusion

- $O(\beta)$ term originating from CSB in EoS is related to
 - the restoration of the chiral symmetry breaking
 - effective mass (self-energy) of nucleons in medium
 - \rightarrow QCD sum rule approach works to understand it
- QCD-CSB interaction can describe ONS anomaly

Perspectives

- How abount CIB interaction, originating from m_{π⁰} ≠ m_{π[±]}?
 Pion is NG boson → in-medium effect is important
- Ongoing
 - QCD-based CIB interaction (w/ Colò, Hatsuda, Roca-Maza, Sagawa)
 - Relativistic CSB EDF (w/ Cheoun, Sagawa, Tanimura)
- Ultimate goal
 - "Complete & accurate" nuclear EDF
 - Can we understand "medium effect" from QCD?

Thank you for attention!!