Systematic measurement of charged pion production in HIC with RI beams at RIKEN-RIBF

Tadaaki Isobe RIKEN, Nishina Center 10/09/2024

Density dependent Symmetry Energy (SE) constraints obtained from structure and HI collisions

- Plotting constrain on SE at the sensitive density for each observables.
 - Skin thickness, nuclear mass, electric dipole polarizability.
- HIC for proving SE of high dense region
 - Based on charged pion spectra ratio
 - SPiRIT pion data point at $\rho \sim 1.5 \rho_0$

- For making stronger constraint based on charged pion data:
 - We want systematic data
 - We want high precision data

W.G. Lynch and M.B. Tsang PLB 830, 137098 (2022)

Pion production from HIC to constrain the symmetry energy

- Difference of symmetry energy is appeared as n/p ratio in bulk matter.
- n/p ratio in dense region can be investigated through charged pion ratio as pions have the information mainly of dense region.

Heavy RI Collision program @RIBF

- Experimental project to give a constrain on the density dependent symmetry energy mainly for higher dense region.
- Systematic measurements in same Z but different N systems realized with heavy RI beam.
 - Additional parameter we can control. (Control nuclear effect.)
 - <u>ρ~2ρ₀ nuclear matter at RIBF energy.</u>
- Effect of symmetry energy on each observables is expected to be largest around this energy region. (especially pion emission)
- 1st experimental campaign using Sn (Z=50) isotopes in 2016 spring.
 - Data taken for 4 systems.

Primary	Beam	Target	E _{beam} /A	(N-Z/A) _{sys}
238	¹³² Sn	¹²⁴ Sn	270	0.22
	¹²⁴ Sn	¹¹² Sn	270	0.15
¹²⁴ Xe	¹⁰⁸ Sn	¹¹² Sn	270	0.09
	¹¹² Sn	¹²⁴ Sn	270	0.15

RIKEN-RIBF: RI production at world leading RI facility

HI collision data is not only Sn+Sn

- Purity of produced RI beam is not 100%.
- Purity depends on the requirement on the 2ndary beam property.
 - Z, N, Q and Beam energy.

Reactions N(π +)>10 && N(π -)>10

• Why don't we analyze those data?

Charged particle measurement with Time Projection Chamber

Measure all of particles produced in a HIC TPC ParticleID for ¹³²Sn+¹²⁴Sn Particle ID based on rigidity-dE/dx (dE/dx \propto Z²) Rigidity \rightarrow particle momentum h2GoodPID_132Sn_LR3 $dE/dx\rangle$ (arb. 5.129304e+07 Entries 10^{3} 1028 Mean x π^{-} π 10^{-3} Mean y 269.9 10^{3} Std Dev x 513.7 [⊥]dp/Wp Std Dev y 445.7 6 10^{2} 10^{-5} $^{132}Sn + ^{124}Sn$ 108 Sn + 112 Sn E/A = 270 MeVE/A = 270 MeV3He 10^{-6} π^{+} π^+ 10^{2} 10^{-3} 10 *[⊥]d*p/Wp 10^{-5} no pion potential best fit 500 1500 2000 3000 10002500 10^{-6} Rigidity p/q (MeV/*c*) 100 200 300 100 200 300 400 0 p_T (MeV/c) p_T (MeV/c)

Estee et al., PRL 126 (2021) 162701

One of the next steps: Solenoid type system at RIBF

- Solenoid type magnet
 - 1.2m inside diameter
 - 1.2m in beam direction
 - Up to 0.7T
- Moving from J-PARC to RIBF in 2025.
- Replaceable HODO and DC are already installed
- Higher rate beam can be accepted.
- Appropriate geometry to measure particle flow.
 →Measurement of high pT pion.
- \rightarrow Measurement of charged pion flow.

2023/11/01@ JPARC

Experimental setup with solenoid type system

Summary

- Heavy RI collision experiment was conducted at RIKEN-RIBF to give constraint on EoS for high dense regime.
- Systematic charged pion data with different beam energy and reaction systems were taken.
- Charged pion ratio data shows less dependence on beam energy while it depends on N/Z.
 - FOPI shows dependence on beam energy.
 - Main production mechanism of charged pion is different? Range of beam energy is too small to see the tendency?
 - 2024 spirit Xe+Sn data may give some hints.
- New projects to utilize solenoid type spectrometer are on-going.
 - Expected to utilize for taking high-pT pion data with higher rate beam.