

Symmetry energy in dilute and dense matter Panagiota Papakonstantinou

September 11, 2024 NuSym 2024, XIIth International Symposium on Nuclear Symmetry Energy

Contents

01 Introduction

Symmetry Energy Coefficients

02 Curvature parameter K_{symi}

Bayesian analyses of nuclear and astrophysical data

03 R_{pn}, a_D tensions

Neutron skin and dipole polarizability

04 Conclusion

Status summary

01 Introduction

Density dependence of symmetry energy :: properties of neutron rich nuclear systems

01 Introduction

• Symmetry energy coefficients

Connecting nuclear data and the equation of state: energy density functionals

Problem:

Majority of EDFs fitted to data extrapolate to unrealistic EoSs

Imposing realistic EoS parameters to EDFs can give strange nuclear results

- Overcome by:
	- KIDS a versatile framework for the nuclear EoS and EDF
	- \Box Grounded in theory of interacting Fermi systems
	- □ Adjustable number of parameters depending on application

(optimal for bulk nuclear properties and neutron stars: 3+4 EoS coefficients)

- \Box In medium effective mass is decoupled from the EoS coefficients
- \Box No forced, unphysical correlations

Dutra et al, PRC85,035201 Stevenson et al., AIP Conf.Proc1529,262 Roca-Maza&Paar, ProgPartNuclPhys101,96

Reviewed in: PP&Hyun, Symmetry 15 (2023) 683

Easy to use - like an extended Skyrme functional

Selected results from:

Xu&PP, Phys. Rev. C 105,044305 Zhou,Xu,PP, Phys. Rev. C 107, 055803 Gil et al., IJMPE 31, 2250013

- \Box Bayesian analysis of isovector nuclear properties; neutron-star properties
- Combined analyses of nuclear properties and neutron-star properties

02 Curvature parameter K_{sym} of the symmetry energy

Bayesian analysis of isovector nuclear properties

Examined ²⁰⁸Pb and ¹²⁰Sn

Isovector constraints: Neutron skin thickness, giant dipole resonance, dipole polarizability

Isoscalar constraints: mass, charge radius, energy of the isoscalar monopole resonance Results for KIDS are compared with standard Skyrme-Hartree-Fock

120

120

 $8.0x10^{-4}$

 (b)

 $8.0x10^{-4}$

 6.4×10^{-4}

 4.8×10^{-4}

 3.2×10^{-4}

 $1.6x10^{-4}$

 $8x10^{-5}$

 $6x10^{-5}$

 $5x10^{-5}$

 $3x10^{-5}$

 $2x10^{-5}$

 $\mathbf{0}$

100

 0.0

100

(k)

 120 Sn

 (h)

 120 S

Bayesian analysis of isovector nuclear properties

Xu&PP, Phys. Rev. C 105,044305

KIDS : Broader PDFs K_{sym} unconstrained

Xu&PP, Phys. Rev. C 105,044305

KIDS : Broader PDFs K_{sym} unconstrained

Xu&PP, Phys. Rev. C 105,044305

Xu&PP, Phys. Rev. C 105,044305

Analyses of astronomical data Combined analysis with nuclear data

Corresponding EoS domains

KIDS model allows for

 \Box Inflection point: soft-to-stiff transition,

important for description of dense matter

 \Box Decoupling of dilute and dense regimes

 $208Pb$, J=33 MeV

Summary so far: J≈30-33 MeV, L ≈ 45-65 MeV, K_{sym} ≈ -200-0 MeV

 \Box (No!) What would it take?

Predictions for the neutron skin

 \Box KIDS predictions for the neutron skin when the parameters are constrained from gross nuclear properties (masses, charge radii) and neutron star properties, generally agree with CREX and underestimate PREX – see C.H.Hyun, arXiv:2112.00996 *[~300 KIDS EDFs obeying EoS*] \Box The tension is similar to other studies, including

RMF models (*Esra Yüksel's talk*)

- □ Searching for KIDS parameter sets which reproduce both CREX and PREXII within their respective errors (1σ) and at the same time basic nuclear properties (<1%)
- Extend the formalism to vary freely up to 5+5 EoS parameters: including skewness and kyrtosis of both symmetric matter (Q₀, R₀) and symmetry energy (Q_{sym}, R_{sym}) , as follows:

 ρ_0 = 0.15-0.16 fm⁻³, E₀ = -16 MeV, K₀ = 200-240 MeV J = 30-36 MeV L = 40-70MeV

- K_{sym} varied widely in steps of 50 MeV
- Q_{0} , Q_{sym} varied widely in steps of 500MeV
- R_{0} , R_{sym} varied widely in steps of 2 GeV

and in addition: C₁₂ = -66 MeV fm⁵, D₁₂ = 2.5 MeV fm⁵, m*/m = 0.82, κ = 0.22, W₀ = 133 MeV fm⁵

For a first study of CREX-PREX only, see arXiv:2210.02696 (Rila 2022 proceedings)

Domain with best a_D

- \Box Unorthodox but not necessarily unphysical behavior at low density
- \Box Consistent with analyses of heavy-ion collisions

Domain with best a_D

- \Box Unorthodox but not necessarily unphysical behavior at low density
- \Box Consistent with analyses of heavy-ion collisions

- \Box Most traditional EDF models correspond to a symmetry energy with a near-parabolic dependence on the density, either stiff or soft
- □ Exploring the full density dependence of the EoS requires extended models beyond traditional functionals, as shown here with the more flexible KIDS.
	- \circ K_{sym} cannot be constrained from nuclear data alone
	- o Correlations between K_{sym} and L & effective mass in Skyrme models are a model artifact
- \Box Combined analyses of nuclear isovector properties and astronomical observations suggest a soft-to-stiff transition somewhere above saturation density
- A reconciliation of CREX, PREXII and dipole polarizability data suggests an even more complex behavior, consistent with clusterization at low densities according to HIC data
	- o Interpolations in progress

Thank you!

대전광역시 유성구 국제과학로 1 1, Gukjegwahak-ro, Yuseong-gu, Daejeon, Korea

T 042 878 8827 ppapakon@ibs.re.kr