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ü Supervised learning on the nuclear 
symmetry enery

ü Bayesian inference
ü Supervised learning
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01 Overview of HIC

Yongjia Wang (王永佳)

u Low energy fusion reaction

u Relativistic HIC

beam 
energy

~100 MeV- a few GeV/nucleon

~100 MeV/nucleon > hundreds of GeV/nucleon
Nuclear structure, 
boundary of nuclear chart

u intermediate energies HIC

Nuclear 
equation of 
state

QCD phase diagram, 
QGP properties 
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K0 and L determine the EOS in the vicinity of the saturation density.

Nuclear equation of state (EOS)

 Neutron starNuclear landscape  Heavy ion collision
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The thermodynamic relationship 
between the binding energy E (or 

pressure P) and density ρ, as well as 
the isospin asymmetry δ.
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The incompressibility K0 from properties of nuclei

J. R. Stone, et al. PRC89(2014)

isoscalar giant monopole 
resonances (GMR), nuclear 

masses...

250<K0<315 MeV, based on the 
most precise and up-to-date data 
on GMR energies.
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HIC offers a unique way to create nuclear matter with high
density and isospin asymmetry in laboratory.

EOS can be deduced from the comparision bewteen 
experimental observables and transport model calculations. 
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Nuclear equation of state Some of highly cited papers
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Nuclear equation of state
Two White papers
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01 研究背景 Yongjia Wang (王永佳)

Nuclear equation of state
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Nuclear density

The density-dependent nuclear symmetry energy Esym(ρ)
Esym(ρ) is crucial for our understanding of diverse phenomena observed in rare isotopes, nuclear reactions 
with exotic nuclei, as well as neutron star and its merger.

Considerable efforts have been made, however 
the whole picture of Esym(ρ) is still indistinct.
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Physics Letters B 802 (2020) 135249

The density-dependent nuclear symmetry energy Esym(ρ)

Model calculations: considering 
different interactions that exhibit 
different types of Esym(ρ).

Experimental data: the rapidity-
dependent elliptic flow.

By using UrQMD model, together 
with the FOPI data on elliptic flow, 
the slope parameter of Esym(ρ) can be 
constrained.
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Yongjia Wang (王永佳) P13APL Mater. 4, 053208 (2016); https://doi.org/10.1063/1.4946894



01 Background

01 研究背景 Yongjia Wang (王永佳)

1985               1995               2005               2015               2025

Vast amount 
of Exp. data

Appearance of transport model.
V(B)UU、QMD，AMD

Isospin 
physics

More 
precise Exp. 

data

Rapid development
 of transport model 

Nuclear structure+HIC
+ Neutron star 

01 研究背景 Yongjia Wang (王永佳) P15

Use of computer    Personal compute       computer cluster                     GPU

More Exp. 
FAIR, FRIB, 
HIAF, NICA



P16

02 Machine learning

Statistical 
methods

Big data driven



02 机器学习 P17

02 Machine learning



02 机器学习 P18
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Random Forest
Gradient Boosting Decision Trees（GBDT）
XGBoost（eXtreme Gradient Boosting）
CatBoost
LightGBM (Light Gradient Boosting Machine)
......

Machine learning



02 机器学习 P19
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Physics Letters B 833 (2022) 137348

Bernhard J E, Moreland J S, Bass S A. Bayesian estimation of 
the specific shear and bulk viscosity of quark–gluon plasma[J]. 
Nature Physics, 2019, 15(11): 1113-1117.

Machine learning



02 机器学习 P20
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SπRIT+ImQMD

Machine learning
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E895、NA49、STAR+UrQMD

Machine learning



Physics Letters B 822 (2021) 136669

03 Results

P22

UrQMD

100 events

yz: -2.0 to 2.0 
with 40 bins,
pt: 0 to 1 GeV/c 
with 20 bins



Physics Letters B 822 (2021) 136669

Fingerprints of Esym(ρ) on 
the transverse momentum 
and rapidity distributions 
of protons and neutrons 
can be identified by 
convolutional neural 
network algorithm.

03 Results
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The mean values of predicted L and its standard 
deviation σ obtained with Gaussian fit.
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Results

Event-by-event
Au+Au
b=5 fm
Elab=0.4A GeV

Can we decode 
information 
event-by-event?



Physics Letters B 835 (2022) 137508

30 event-by-event obseravbles related to 
momenta of protons and deuterons.

03 Results

P23



Physics Letters B 835 (2022) 137508

Ø Fingerprints of Esym(ρ) can be decoded from a large set of observables in HICs on an event-by-event basis by the 
trained machine learning algorithm.

Ø With feature attribution methods, the most important features that drive predictions can be identitied.

Feature importance
03 Results

Good 
generalizability.
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03 Results
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Gaussian process (GP) model 
is trained as an emulator of 
UrQMD model to interpolate 
the simulation results in the 
parameter space.



03 Results
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04 Summary and outlook

04 总结与展望

Advantages:
ü constraining 

multi- parameters 
from multi- 
observables

ü estimating 
uncertainties
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04 Summary and Outlook

04 总结与展望

 A diverse array of ML algorithm has been developed and continue to be refined to 
cover a wide variety of data types and tasks, this is a sufficiently large and diverse pool 
of tools feasible to study heavy-ion physics

Introducing the latest developments of ML 
into tools for studying nuclear physics

Condensed matter physics and particle physics.

Using experiences of ML applications in other fields

Using input features with defined physical meanings or by considering physical symmetries 
and laws when constructing architectures of ML algorithms

Introducing physical information into ML 
algorithms

 Developing more sophisticated models, or using different models to generate data 

 Improving the quality of data
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Mergence 
of ML and 
heavy-ion 

physics 03


