NUSYM 2024, XIIth International Symposium on Nuclear Symmetry Energy

ID de Contribution: 8

Type: Oral Presentation

Bayesian model averaging for nuclear symmetry energy from effective proton-neutron chemical potential difference of neutron-rich nuclei

jeudi 12 septembre 2024 15:00 (20 minutes)

The data-driven Bayesian model averaging is a rigorous statistical approach to combining multiple models for a unified prediction. Compared with the individual model, it provides more reliable information, especially for problems involving apparent model dependence. In this work, within both the non-relativistic Skyrme energy density functional and the nonlinear relativistic mean field model, the effective proton-neutron chemical potential difference $\Delta \mu_{pn}^*$ of neutron-rich nuclei is found to be strongly sensitive to the symmetry energy $E_{sym}(\rho)$ around $2\rho_0/3$, with ρ_0 being the nuclear saturation density. Given discrepancies on the $\Delta \mu_{pn}^* - E_{sym}(2\rho_0/3)$ correlations between the two models, we carry out a Bayesian model averaging analysis based on Gaussian process emulators to extract the symmetry energy around $2\rho_0/3$ from the measured $\Delta \mu_{pn}^*$ of 5 doubly magic nuclei ⁴⁸Ca, ⁶⁸Ni, ⁸⁸Sr, ¹³²Sn and ²⁰⁸Pb. Specifically, the $E_{sym}(2\rho_0/3)$ is inferred to be $E_{sym}(2\rho_0/3) = 25.6^{+1.4}_{-1.3}$ MeV at 1 σ confidence level. The obtained constraints on the $E_{sym}(\rho)$ around $2\rho_0/3$ agree well with microscopic predictions and results from other isovector indicators.

Auteurs principaux: QIU, Mengying (Sun Yat-sen University); CAI, Bao-Jun (Quantum Machine Learning Laboratory, Shadow Creator Inc.); CHEN, Lie-Wen (Shanghai Jiao Tong University); YUAN, Cen-Xi (Sun Yat-sen University); ZHANG, Zhen (Sun Yat-sen University)

Orateur: QIU, Mengying (Sun Yat-sen University)

Classification de Session: Combined analysis of nuclear and astrophysics information, Bayesian approach, and machine learning