NUSYM 2024 XIIth International Symposium on Nuclear Symmetry Energy Caen France

中山大学中法核工程与技术学院 Institut franco-chinois de l'énergie nucléaire université Sun Yat-sen

Bayesian model averaging for nuclear symmetry energy from effective proton-neutron chemical potential difference of neutron-rich nuclei

Mengying QIU

Sun Yat-sen University, China

• Collaborator: Zhen Zhang, Bao-Jun Cai, Lie-Wen Chen, Cen-Xi Yuan

12 September 2024

Why Model Averaging?

George E.P. Box

"Essentially,

All models are wrong, but some are useful"

"Which model should we trust?"

Why Model Averaging for symmetry energy?

L.W.Chen, Nucl.Phys.Rev.34,20 (2017). N.B.Zhang, B.A.Li, Eur.Phys.J.A 55,39(2019)

Large uncertainty remains

• Intra-model uncertainty

Experimental data uncertainty Theoretical uncertainty Correlation between parameters

Inter-model uncertainty Variations across different models

ightarrow Possible bias

...

Why Model Averaging for symmetry energy?

2/12

Large uncertainty remains

• Intra-model uncertainty

Experimental data uncertainty Theoretical uncertainty Correlation between parameters

• Inter-model uncertainty Variations across different models

\rightarrow Possible bias

Why Model Averaging for symmetry energy?

L.W.Chen, Nucl.Phys.Rev.34,20 (2017). N.B.Zhang, B.A.Li, Eur.Phys.J.A 55,39(2019)

Large uncertainty remains

• Intra-model uncertainty

Experimental data uncertainty Theoretical uncertainty Correlation between parameters

• Inter-model uncertainty Variations across different models

\rightarrow Possible bias

Model Averaging

Possible option for combining model predictions

Model Averaging

Possible option for combining model predictions

Consistent treatment within Bayesian framework

Bayesian Analysis

Under model \mathcal{M}' s assumption

Bayesian Model Averaging (BMA)

 Each model's contribution is weighted by its model posterior probability

 $p(\mathcal{O}|oldsymbol{y})\!=\sum_i p(\mathcal{O}|oldsymbol{y},oldsymbol{\mathcal{M}}_i)oldsymbol{p}\left(oldsymbol{\mathcal{M}}_i|oldsymbol{y}
ight)$

Model posterior probability: a weighting factor

 $p(\mathcal{M}_i | \mathbf{y}) = \frac{p(\mathbf{y} | \mathcal{M}_i) \pi(\mathcal{M}_i)}{\sum_{\ell} p(\mathbf{y} | \mathcal{M}_{\ell}) \pi(\mathcal{M}_{\ell})}$

- The model prior π(M_i) is our preference on M_i before seeing the data
- Bayesian evidence/marginal likelihood: measures the probability that the model reproduces the experimental data

$$p(oldsymbol{y} \mid oldsymbol{\mathcal{M}}_i) \!=\! \int p(oldsymbol{y} \mid \! eta_i, \sigma_i, oldsymbol{\mathcal{M}}_i) \pi(oldsymbol{ heta}_i, \sigma_i \mid \! oldsymbol{\mathcal{M}}_i) doldsymbol{ heta}_i d\sigma_i$$

V. Cirigliano et al, J. Phys. G 49, 120502 (2022)

30

Effective Proton-neutron chemical potential difference

- Effective chemical potential
 - $\mu_{\rm n} = \frac{\partial B(N,Z)}{\partial N} \approx \frac{B(N+2,Z) B(N-2,Z)}{4}, \quad (1)$ $\mu_{\rm p} = \frac{\partial B(N,Z)}{\partial Z} \approx \frac{B(N,Z+2) B(N,Z-2)}{4}, \quad (2)$
- Proton-neutron chemical potential differences

 $\Delta \mu_{
m pn}^* \propto a_{
m sym} \approx E_{
m sym}(
ho_r)$

- $\Delta \mu_{\rm pn}^* = \frac{1}{4} \left[B(N, Z+2) B(N, Z-2) B(N+2, Z) + B(N-2, Z) \right]$
- **D** Semi empirical mass formula

$$B(N,Z) = a_{\rm v}A - a_{\rm s}A^{2/3} - a_{\rm c}\frac{Z^2}{A^{1/3}} - a_{\rm sym}I^2A + E_{\rm mic},$$

Expected sensitivity

 $\Delta \mu_{\rm pn}^* \simeq a_{\rm c} \left[\frac{1-Z}{(A-2)^{1/3}} - \frac{1+Z}{(A+2)^{1/3}} \right] + a_{\rm sym} \frac{4A^2I}{A^2 - 4} \simeq -2a_{\rm c} \frac{Z}{A^{1/3}} + 4a_{\rm sym}I$

Pawel Danielewicz, Jenny Lee, Nuclear Physics A 922 (2014) M. Centelles, Phys. Rev. Lett. 102, 122502 (2009) L.-W. Chen, Phys. Rev. C 83, 044308 (2011) N. Wang, L. Ou, and M. Liu, Phys. Rev. C 87, 034327(2013)

26

Non relativistic & covariant EDFs

 $\Delta \mu_{
m pn}^*$ for 5 doubly magic nuclei $E_{
m sym}(
ho)$ at different densities

Pearson correlation coefficient

RUN UNIT

 A strong linear correlation between the Δμ^{*}_{pn} and the symmetry energy at subsaturation densities

• High sensitivity around
$$2\rho_0/3$$

M. Qiu, B. J. Cai, L.-W. Chen et al. Phys. Lett. B 849 (2024) 138435

Gaussian Process(GP)-Sky & GP-RMF

- Tune Gaussian processes using the results of 50 Skyrme EDFs and 50 covariant EDFs.
 - *Surmise* python package by BAND collaboration
- GP predictions with uncertainties.

M. Plumlee, O. Surer, S. M. Wild, and M. Y.-H.Chan, surmise 0.2.0, https://surmise.readthedocs.io/en/latest/

Symmetry energy at $2\rho_0/3$

- RUN IN INTERNET
- Posterior by Sequential Monte Carlo algorithm from PyMCv4.0

O. Abril-Pla, et al., PeerJ Computer Science 9,e1516 (2023)

Skyrme EDFs $E_{
m sym}(2/3
ho_0) = 25.8^{+1.3}_{-1.2}~{
m MeV}$ $\sigma = 0.4^{+0.4}_{-0.2}~{
m MeV}$

Nonlinear RMF $E_{
m sym}(2/3
ho_0) = 24.9 \pm 1.1 \; {
m MeV}$ $\sigma = 0.8^{+0.6}_{-0.3} \; {
m MeV}$

Symmetry energy at $2\rho_0/3$

• Model posterior probability

$$p(\mathcal{M}_i | \mathbf{y}) = \frac{p(\mathbf{y} | \mathcal{M}_i) \pi(\mathcal{M}_i)}{\sum_{\ell} p(\mathbf{y} | \mathcal{M}_{\ell}) \pi(\mathcal{M}_{\ell})}$$

• Equal prior preference

• $E_{
m sym}(2/3
ho_0)$ is inferred to be $25.6^{+1.4}_{-1.3}~{
m MeV}$

Symmetry energy at subsaturation densities

- Brown: Doubly magic nuclei B.A.Brown, Phys. Rev. Lett. 111, 232502 (2013)
- Lynch & Tsang: various terrestrial and astrophysical constraints W.G.Lynch and M.B.Tsang, Phys. Lett. B. 830, 137098 (2022)
- Zhang & Chen: Doubly magic nuclei+PREX+CREX
 Z. Zhang and L.-W. Chen, Phys. Rev. C. 108, 024317 (2023)
- GDR: Giant dipole resonance
 L. Trippa *et al*, Phys. Rev. C 77, 061304 (2008)
- IAS: Isobaric analog states Pawel Danielewicz, Jenny Lee, Nuclear Physics A 922 (2014)
- ΔB: Isotope binding energy difference
 Z. Zhang and L.-W. Chen, Phys. Lett. B 726, 234 (2013)
- $\Delta \varepsilon_F$: Fermi energy difference N. Wang, L. Ou, and M. Liu, Phys. Rev. C 87, 034327(2013)

Summary

- SUN VILLES
- □ Within both the non-relativistic Skyrme EDFs and the nonlinear RMF model, the effective proton-neutron chemical potential difference $\Delta \mu_{pn}^*$ of neutron-rich nuclei is found to be strongly sensitive to the symmetry energy $E_{sym}(\rho)$ around $2\rho_0/3$,
- □ We carried out a Bayesian model averaging analysis based on Gaussian process emulators to extract the symmetry energy around $2\rho_0/3$ 25.6^{+1.4}_{-1.3} MeV
- Since both the intra- and inter-model uncertainties are taken into account in our BMA analyses, the present results are statistically more reliable.

Inclusion of more experimental observables and more theoretical models

Thank you for your attention!