Exploring Composition of Neutron Star Matter with Astrophysical Observations

Prasanta Char University of Salamanca, Spain

Collaborators: Chiranjib Mondal, Francesca Gulminelli, Micaela Oertel

Phys. Rev. D **108**, 103045 (2023), arXiv:2307.12364 [nucl-th]

NUSYM 2024, XIIth International Symposium on Nuclear Symmetry Energy, September 9-13, 2024, Caen, France

the European Union

Prasanta Char (USAL)

Neutron Star Matter

September 12, 2024 1/24

< □ > < □ > < □ > < □ > < □ > < □ >

Outline

- A very brief introduction to neutron stars (NSs)
- Description of nuclear matter
- Models specific to this work and the constraints used
- Results
- Summary

- 3

イロト イボト イヨト イヨト

Structure of a Neutron Star

Figure: Schematic picture of a NS Interior

Prasanta Char (USAL)

Neutron Star Matter

September 12, 2024 3 / 24

イロト 不得 トイラト イラト 一日

NS Observations that an EOS must satisfy

• Precise mass-measurement of massive NSs:

 $(1.908 \pm 0.016) M_{\odot}$ Arzoumanian et al, ApJS 235, 37 (2018).

 $(2.01 \pm 0.04) M_{\odot}$ Antoniadis et al, Science 340, 448 (2013).

 $(2.08 \pm 0.07) M_{\odot}$ E. Fonseca et al, ApJL 915 L12 (2021).

• BNS merger event GW170817 provides bounds on tidal deformability (A), and pressure at $2\rho_0$; Abbott et al, PRL 121, 161101 (2018):

 $\Lambda_{1.4} = 190^{+390}_{-120} \Rightarrow \Lambda_{1.4} \leq 580, \ \textit{P}(2\rho_0) = 3.5^{+2.7}_{-1.7} \times 10^{34} \ \textrm{dyn/cm}^2$

- NICER collaboration provided:
 - 1) Simultaneous mass-radius measurements of PSR J0030+0451

 $M = 1.34^{+0.15}_{-0.16} M_{\odot}$, $R = 12.71^{+1.14}_{-1.19}$ km Riley et al, ApJL, 887, L21 (2019).

 $M = 1.44^{+0.15}_{-0.14} M_{\odot}$, $R = 13.02^{+1.24}_{-1.06}$ km Miller et al, ApJL, 887, L24 (2019).

- 2) Radius measurements of J0740+6620
- $R = 12.39^{+1.30}_{-0.98}$ km Riley et al, ApJL, 918, L27 (2021).
- $R = 13.7^{+2.6}_{-1.5}$ km Miller et al, ApJL, 918, L28 (2021).
- 3) Radius measurement of PSR J0437-4715
- $R = 11.36^{+0.95}_{-0.63}$ km Choudhury et al, ApJL, 971, L20 (2024).

Prasanta Char (USAL)

Neutron Star Matter

Prasanta Char (USAL)

Neutron Star Matter

September 12, 2024 5 / 24

イロト 不得 トイヨト イヨト 二日

EOS of Dense Matter from Nuclear Physics

Difficulties

- Constituents are not known.
- Interaction between constituents are not fully known.
- Uncertainties in the many-body description.
- \Rightarrow EOS is model dependent.

Phenomenological approaches are most widely used.

- Based on effective Interaction.
 - 1. Non-relativistic Skyrme-Interaction (\sim 255)
 - 2. Relativistic Mean Field (RMF) models (\sim 270)

Dutra et al. PRC 85, 035201 (2012); Dutra et al. PRC 90, 055203 (2014);

Oertel et al. RMP 89, 015007 (2017); Sun et al. Phys.Rev.C 109, 055801 (2024)

Our main objective: Exploring the parameter space to understand the uncertainties.

Prasanta Char (USAL)

Neutron Star Matter

September 12, 2024 6 / 24

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ののの

Nucleonic metamodelling

- Foundational aspects (Based on J. Margueron *et. al.*, PRC 97, 025805 (2018))
- Flexible functional $e(\rho_n, \rho_p)$ able to reproduce existing effective nucleonic models and interpolate between them.
- Expansion in powers of the Fermi momentum or of the density.
- Expansion around saturation: Parameter space = emp. par. \vec{X}
- Beta-equilibrium!!!

$$e_{Elf}(\rho_n, \rho_p) = KE(\rho_n, \rho_p) + \sum_{\alpha \ge 0} \frac{1}{\alpha!} \left(\mathsf{v}_{\alpha}^{is} + \mathsf{v}_{\alpha}^{iv} \delta^2 \right) x^{\alpha}$$

Prasanta Char (USAL)

Neutron Star Matter

September 12, 2024 7 / 24

イロト 不得 トイヨト イヨト 二日

RMF model

- Interaction between baryons is described via exchange of mesons.
- The most general form of the interaction Lagrangian density:

$$\mathcal{L}_{\rm DD} = \overline{\psi}(i\gamma^{\mu}\partial_{\mu} - M)\psi + \Gamma_{\sigma}(\rho)\sigma\overline{\psi}\psi - \Gamma_{\omega}(\rho)\overline{\psi}\gamma^{\mu}\omega_{\mu}\psi - \frac{\Gamma_{\rho}(\rho)}{2}\overline{\psi}\gamma^{\mu}\rho_{\mu}\cdot\boldsymbol{\tau}\psi \\ + \frac{1}{2}(\partial^{\mu}\sigma\partial_{\mu}\sigma - m_{\sigma}^{2}\sigma^{2}) - \frac{1}{4}F^{\mu\nu}F_{\mu\nu} + \frac{1}{2}m_{\omega}^{2}\omega_{\mu}\omega^{\mu} - \frac{1}{4}\vec{B}^{\mu\nu}\vec{B}_{\mu\nu} + \frac{1}{2}m_{\rho}^{2}\rho_{\mu}\cdot\rho^{\mu},$$

 σ , ω_{μ} , and ρ_{μ} are meson fields.

• For the density dependent (DD) models, the coupling parameters Γ_{σ} , Γ_{ω} , and Γ_{ρ} are density dependent and do not have nonlinear terms.

$$\Gamma_i(\rho) = a_i + (b_i + d_i x^3) e^{-c_i x},$$

for $i = \sigma, \omega, \rho$, and $x = n/n_0$.

P. Gogelein, E. N. E. van Dalen, C. Fuchs, and H. Muther, Phys. Rev. C 77, 025802 (2008)

Prasanta Char (USAL)

September 12, 2024 8 / 24

イロト 不得下 イヨト イヨト 二日

Saturation properties of nuclear matter:

Paremeter sets are obtained by exploring the uncertainties of the saturation properties of nuclear matter:

- Saturation density: $\rho_{\textit{sat}} = (0.135, 0.195) \; {\rm fm}^{-3}$
- Binding energy per nucleon: $E_{sat} = (-14, -17)$ MeV.
- Incompressibility: $K_{sat} = (150, 350)$ MeV.
- Symmetry energy: $E_{sym} = (20, 45)$ MeV.
- Symmetry energy slope : $L_{sym} = (20, 180)$ MeV.

Additionally, we use the constraints coming from chiral EFT calculations from Drischler et al., Phys. Rev. C 93, 054314 (2016)

Prasanta Char (USAL)

Neutron Star Matter

September 12, 2024 9 / 24

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ののの

Results: Unified EOS

- High density EOS is constructed for a set of model parameters correspondening to a unique set of nuclear matter parameters
- Low density EOS is calculated within the compressible liquid drop model (CLDM) model for the aformentioned set of nuclear matter parameters.
- β -equilbrium is applied over the whole range.
- The crust and the core are matched with the continuity of pressure and chemical potential.

Results:

Figure: Pressure (panel a) and proton fraction (panel b) as a function of baryon density n_B for two example EOS models with negative and positive K_{sym} , respectively.

Prasanta Char (USAL)

Neutron Star Matter

September 12, 2024 11 / 24

< 4 ₽ >

Results: SNM Parameters

Results: Isospin Parameters

Results: EOS at β -equilbrium

Prasanta Char (USAL)

Neutron Star Matter

September 12, 2024 14 / 24

Results: Mass - Radius - Tidal deformability

Figure: Mass-radius (left) and mass-tidal deformability (right) relations along with the Model I and II obtained in the present study. 1σ constraints from the NICER observations are also indicated in the mass-radius panel.

Prasanta Char (USAL)

Neutron Star Matter

September 12, 2024 15 / 24

(I) < (II) <

Results: Proton fraction

Prasanta Char (USAL)

Neutron Star Matter

September 12, 2024 16 / 24

Results: Including Λ hyperons

Prasanta Char (USAL)

Neutron Star Matter

September 12, 2024 17 / 24

Results: Including Λ hyperons

Prasanta Char (USAL)

Neutron Star Matter

September 12, 2024 18 / 24

Summary:

- Any study of dense matter EOS is heavily model dependent. Therefore, a metamodelling approach to dense matter is very helpful to refine our knowledge.
- Within the GDFM type density-dependent RMF model, a wide range of EOSs can be generated with diverse nuclear matter properties that will be able to satisfy present observational constraints.
- One key finding is the large variation of proton fraction within this model.
- Ongoing project: Inclusion of hyperons
- Our future objective is to apply this model to study finite nuclei properties

Thank You

Prasanta Char (USAL)

Neutron Star Matter

September 12, 2024 19 / 24

イロト 不得 トイヨト イヨト 二日

Prasanta Char (USAL)

Neutron Star Matter

September 12, 2024 20 / 24

▲□▶ ▲圖▶ ▲国▶ ▲国▶ 二百

Backup: Speed of Sound

Prasanta Char (USAL)

Neutron Star Matter

イロト イヨト イヨト イヨト September 12, 2024 21 / 24

3

Backup: Correlations among NMPs

Prasanta Char (USAL)

Neutron Star Matter

September 12, 2024 22 / 24

э

Backup: Correlations among NMPs and selected Observables

R _{1.4}	0.14	-0.53	0.05	0.32	0.45	0.04	0.41	0.35	-0.24	-0.19
$\Lambda_{1.4}$	0.15	-0.57	0.11	0.40	0.52	-0.13	0.21	0.20	-0.12	-0.05
$x_{p}^{1.4}$	-0.24		0.10	-0.22	-0.43	0.75	0.93	0.91	-0.04	-0.61
R _{2.0}	0.18	-0.68	0.05	0.41	0.62	-0.27	-0.02	-0.06	-0.05	0.18
$\Lambda_{2.0}$	0.19	-0.67	0.07	0.44	0.65	-0.36	-0.16	-0.17	0.01	0.27
$x_p^{2.0}$	-0.20	0.54	0.06	-0.27	-0.48	0.66	0.81	0.83	0.19	-0.43
M _{max}	0.20	-0.72	0.03	0.35	0.68	-0.49	-0.42	-0.47	0.05	0.52
$n_{B,c}^{M_{max}}$	-0.19	0.66	-0.03	-0.40	-0.64	0.42	0.31	0.34	-0.14	-0.48
	4500	(150)	+50°	0.00	Vit	4	2 Starter	tor	Osh	Nerth

Prasanta Char (USAL)

Neutron Star Matter

```
Backup: With HESS J1731-347
```


Prasanta Char (USAL)

Neutron Star Matter

September 12, 2024 24 / 24

3

A D N A B N A B N A B N