Clustering in the (proto)neutron star crust and the contribution of nuclear experiments

F.Gulminelli, (LPC and Normandie Université, Caen) NUSYM 2024 GANIL

- Most signals from CS involve transport properties
- Some of them mainly concern $\rho \leq \rho_0$ matter \equiv clusters
 - o NS cooling: B-thermal evolution
 - Relaxation after accretion & deep crust heating
 - o CC, PNS cooling & mergers

 $v - Z T > 10^{10} K$

- e-Z, $T \approx 10^8 K$

Schmitt&Shternin Springer 2018

• Key micro feature: charge distribution => resistivity

- Most signals from CS involve transport properties
- Some of them mainly concern $\rho \leq \rho_0$ matter \equiv clusters
 - o NS cooling: B-thermal evolution
 - o Relaxation after accretion & deep crust heating
 - o CC, PNS cooling & mergers

• e-Z, $T \approx 10^8 K$

v-Z $T > 10^{10} K$

Schmitt&Shternin Springer 2018

- Key micro feature: charge distribution => resistivity
 - o T≫0 : distribution of nuclei (or pasta)
 - light cluster abundancies (indirectly) affect the explosion dynamics and v–luminosity

T.Fischer et al Phys. Rev. C 102(2020) 055807

- Most signals from CS involve transport properties
- Some of them mainly concern $\rho \leq \rho_0$ matter \equiv clusters
 - o NS cooling: B-thermal evolution
 - o Relaxation after accretion & deep crust heating
 - o CC, PNS cooling & mergers

• e-Z, $T \approx 10^8 K$

v-Z $T > 10^{10} K$ Schmitt&Shternin Springer 2018

- Key micro feature: charge distribution => resistivity
 - o T≈0 : impurities in the catalyzed crust
 - A strong crustal resistivity due to impurities affects the NS magnetothermal evolution

Static structure factor

•
$$T>T_m \quad v_{e(\nu),ion} \rightarrow \sum_j n_j v_{e(\nu),i}^j$$

•
$$T < T_m$$
 $v_{tot} = v_{e,ion} + v_{e,imp}$

$$Z^2 \leftrightarrow \boldsymbol{Q} = \sum_j n_j (Z_j - \langle Z \rangle)^2$$

 $v_{e(v),i}^{J} \propto S^{j}(k)$

Impurity factor

Static structure factor

•
$$T>T_m \quad v_{e(\nu),ion} \to \sum_j n_j v_{e(\nu),i}^j$$

•
$$T < T_m$$
 $v_{tot} = v_{e,ion} + v_{e,imp}$

$$Z^2 \leftrightarrow \boldsymbol{Q} = \sum_j n_j (Z_j - \langle Z \rangle)^2$$

 $v_{e(v),i}^{J} \propto S^{j}(k)$

Impurity factor

Present situation:

- Q taken as a free parameter in cooling and relaxation simulations A.Deibel et al.ApJ839(2017)
- n_i from Saha equations (Nuclear Statistical Equilibrium)

Z.Lin et al, PRC 102(2020)045801

$$n_{AZ} = \frac{g_{AZ}}{2\pi^2\hbar^3} \int_0^\infty dp \left[1 \pm exp\beta \left(\frac{p^2}{2M_{AZ}} - B_{AZ} - A\mu - Z\mu_p \right) \right]^{-1}$$

Nuclei=quasi-particles M,B: vacuum values

Spherical approx or S^j from CMD simulations

R.Nandi et al.ApJ852(2018)

Towards a more controlled theoretical treatment

- Starting point: variational microscopic calculations in the WS cell
- Multi-Component (liquid or solid) plasma: clusters as quasiparticles but cluster functional from microscopic WS calculations

J. W. Negele and D. Vautherin, NPA 207, 298 (1973)

From WS to MCP: mapping in 2 steps

WS cell with a microscopic function $@(\rho_B, Y_p, T):$

 $\mathcal{F}_{WS} = \mathcal{E}_{micro} - TS_{micro} = \min(\hat{\rho}_a, \hat{\kappa}_a)$

=> Optimal particle (and pairing) densities 1. OCP with cluster DoF $\mathcal{F}_{WS} \equiv \mathcal{F}^{OCP} = \mathcal{F}(\rho_{gq}) + \frac{F_{AZ}}{V_{WS}} = \min(A, Z, \rho_{gq})$

=> Optimal cluster

MCP with cluster DoF 2

$$\mathcal{F}^{MCP} = \mathcal{F}(\rho_{gq}) + \sum_{A,Z} n_{AZ} F_{AZ} = \min(\{n_{AZ}\}, \rho_{gq})$$

=> Optimal distribution

From WS to MCP: mapping in 2 steps

• WS cell with a microscopic function $@(\rho_B, Y_p, T):$

 $\mathcal{F}_{WS} = \mathcal{E}_{micro} - TS_{micro} = \min(\hat{\rho}_q, \hat{\kappa}_q)$

 $_{Z} = V_{WS} \big(\mathcal{F}_{WS} - \mathcal{F}_{g} \big) + \mathcal{F}_{g} V_{AZ} + \delta F$

=> Optimal particle (and pairing) densities

$$\mathcal{F}_{WS} \equiv \mathcal{F}^{OCP} = \mathcal{F}(\rho_{gq}) + \frac{F_{AZ}}{V_{WS}} = \min(A, Z, \rho_{gq})$$

=> Optimal cluster

2. MCP with cluster DoF

OCP with cluster DoF

$$\mathcal{F}^{MCP} = \mathcal{F}(\rho_{gq}) + \sum_{A,Z} n_{AZ} F_{AZ} = \min(\{n_{AZ}\}, \rho_{gq})$$

=> Optimal distribution

OCP with cluster DoF

$$\mathcal{F}^{OCP}(A, Z, \rho_{gq}) = \mathcal{F}(\rho_{gq}) + \frac{F_{AZ}}{V_{WS}} \approx \mathcal{F}_{WS}$$

- Below drip: F_{AZ} is just the HFB free energy
- Above drip: $F_{AZ}(A, Z, \rho_{gq})$

 \Rightarrow the cluster functional is in-medium modified

$$\mathcal{F}^{OCP}(A, Z, \rho_{gq}) = \mathcal{F}(\rho_{gq}) + \frac{F_{AZ}}{V_{WS}} \approx \mathcal{F}_{WS}$$

- Below drip: F_{AZ} is just the HFB free energy
- Above drip: $F_{AZ}(A, Z, \rho_{gq})$
- \Rightarrow the cluster functional is in-medium modified
- \Rightarrow Practical implementation: F_{AZ} parametrized as a CLDM with surface parameters fitted from (T)ETF calculation:

$$F_{AZ}^{0} = V_{AZ} \left(\mathcal{F}(\rho_{bulk,q}) - \mathcal{F}(\rho_{gq}) \right) + F_{surf} + F_{coul}$$

continuum states subtracted

Tubbs&Koonin, ApJ 232 (1979) L59 Bonche,Levit,Vautherin NPA427(1984)278

- $\Rightarrow \text{Translational degree of freedom: } F_{AZ} = F_{AZ}^0 + T\left(ln\frac{\lambda_{AZ}^3(M^*)}{gV_f} 1\right)$
- \Rightarrow Effective mass: only bound neutrons are entrained $M^* \approx M\left(1 \frac{\rho_{gn}}{\rho_i}\right)$

Magierski& Bulgac NPA 2004 Martin&Urban PRC 2016

OCP with cluster DoF

 $\Rightarrow \text{Translational degree of freedom: } F_{AZ} = F_{AZ}^0 + T\left(ln\frac{\lambda_{AZ}^3(M^*)}{gV_f} - 1\right)$

 \Rightarrow Effective mass: only bound neutrons are entrained $M^* \approx M\left(1 - \frac{\rho_{gn}}{\rho_i}\right)$

Magierski& Bulgac NPA 2004 Martin&Urban PRC 2016

From WS to MCP: mapping in 2 steps

WS cell with a microscopic function $@(\rho_B, Y_p, T):$

 $\mathcal{F}_{WS} = \mathcal{E}_{micro} - TS_{micro} = \min(\hat{\rho}_a, \hat{\kappa}_a)$

=> Optimal particle (and pairing) densities 1. OCP with cluster DoF $\mathcal{F}_{WS} \equiv \mathcal{F}^{OCP} = \mathcal{F}(\rho_{gq}) + \frac{F_{AZ}}{V_{WC}} = \min(A, Z, \rho_{gq})$

=> Optimal cluster

MCP with cluster DoF 2

$$\mathcal{F}^{MCP} = \mathcal{F}(\rho_{gq}) + \sum_{A,Z} n_{AZ} F_{AZ} = \min(\{n_{AZ}\}, \rho_{gq})$$

=> Optimal distribution

The cluster distribution

Grams 2018, PRC, 97, 035807 Fantina 2020, A&A, 633, A149 Carreau 2020, A&A, 640, A77 Dinh-Thi 2023, A&A, 677, A174

•
$$d\mathcal{F}_{MCP}(\{n_{AZ}\}) = 0$$
 leads to:

Continuum subtracted & microscopic energy and level density

$$n_{AZ} = \frac{g_{AZ}}{2\pi^2\hbar^3} \int_0^\infty dp \left[1 \pm exp\beta \left(\frac{p^2}{2\boldsymbol{M}_{\boldsymbol{AZ}}^*} - \boldsymbol{F}_{\boldsymbol{AZ}}^{\boldsymbol{0}} - N\mu_n - Z\mu_p + \boldsymbol{R}_{\boldsymbol{AZ}}(\boldsymbol{n}_e) \right) \right]^{-1}$$

Rearrangement $(n_e = \sum_{AZ} Z n_{AZ})$

$$\mu_{q} = \frac{\partial \mathcal{F}_{\mu}}{\partial \rho_{gq}} + \sum_{AZ} n_{AZ} \frac{\partial F_{AZ}}{\partial \rho_{gq}} \left(1 - \sum_{AZ} n_{AZ} V_{AZ} \right)^{-1} \approx \frac{\partial \mathcal{F}_{\mu}}{\partial \rho_{gq}} + \frac{1}{V_{WS}^{OCP}} \frac{\partial F_{AZ}^{OCP}}{\partial \rho_{gq}} \left(1 - u_{AZ}^{OCP} \right)^{-1}$$

$$= \mu_{q}^{OCP}$$
Self-consistent
$$\mu(\rho)$$
Perturbation 1st order in $n_{g} - n_{g}^{OCP}$

Nuclear distribution in the outer crust

• Fantina 2020, A&A, 633, A149

Nuclear distribution in the inner crust

Impurity factor
$$Q = \sum_{j} n_{j} (Z_{j} - \langle Z \rangle)^{2}$$

Carreau 2020, A&A, 640, A77

Dinh-Thi 2023, A&A, 677, A174

Impurity factor
$$Q = \sum_{j} n_{j} (Z_{j} - \langle Z \rangle)^{2}$$

- First microscopic calculation of Q_{imp}
- If the cluster distribution is frozen at the crystallization temperatures, the crust is highly resistive even without pasta!

Dinh-Thi 2023, A&A, 677, A174

Impurity factor
$$Q = \sum_{j} n_{j} (Z_{j} - \langle Z \rangle)^{2}$$

- First microscopic calculation of Q_{imp}
- If the cluster distribution is frozen at the crystallization temperatures, the crust is highly resistive even without pasta!
- However: poor description of light clusters with the leptodermous expansion $F_{AZ}^0 = F_{bulk} + F_{surf} + F_{coul}$

Dinh-Thi 2023, A&A, 677, A174

• NSE with a momentum cut-off S.Burrello, PRC 2024

$$n_{AZ} = \frac{g_{AZ}}{2\pi^2\hbar^3} \int_{\mathbf{A}_{AZ}(\mathbf{n},\mathbf{T})}^{\infty} dp \left[1 \pm exp\beta \left(\frac{p^2}{2M_{AZ}} - B_{AZ}^{exp} - A\mu - Z\mu_p \right) \right]^{-1}$$

=> See Stefano's talk!

• Effective masses⇔self-energies in the RMF approximation

$$\mathcal{L} = -\sum_{i \in F} \overline{\psi}_i (\gamma_{\mu} D_{\mu i} + m_i^*) \psi_i - \frac{1}{2} \sum_{i \in S} \left[(D_{\mu i} \psi_i)^2 + m_i^{*2} \psi_i^2 \right] + \sum_{i \in V} \left[(D_{\mu i} \psi_{\nu i} - D_{\nu i} \psi_{\mu i})^2 - \frac{1}{2} m_i^{*2} \psi_{\mu i}^2 \right]$$
$$+ \mathcal{L}_{\sigma \omega \rho} \quad \text{n,p,t,}^{3} \text{He,...} \qquad \text{4He, }^{6} \text{He,...} \qquad \text{d,...}$$

$$m_{AZ}^* = m_{AZ}^{vac} - g_s^{AZ}(n) \langle \sigma \rangle$$

• Effective masses⇔self-energies in the RMF approximation

$$\mathcal{L} = -\sum_{i \in F} \overline{\psi}_{i} (\gamma_{\mu} D_{\mu i} + m_{i}^{*}) \psi_{i} - \frac{1}{2} \sum_{i \in S} \left[(D_{\mu i} \psi_{i})^{2} + m_{i}^{*2} \psi_{i}^{2} \right] + \sum_{i \in V} \left[(D_{\mu i} \psi_{v i} - D_{v i} \psi_{\mu i})^{2} - \frac{1}{2} m_{i}^{*2} \psi_{\mu i}^{2} \right] + \mathcal{L}_{\sigma \omega \rho} \frac{n, p, t, 3 \text{He}, ...}{4 \text{He}, 6 \text{He}, ...}$$

$$m_{AZ}^{*} = m_{AZ}^{vac} - g_{S}^{AZ}(n) \langle \sigma \rangle$$

$$\approx m_{AZ}^{vac} - Ag_{S}(n) \langle \sigma \rangle - \Delta B_{AZ}(n, T)$$
ad-hoc prescription
S. Typel et al, PRC81(2010)015803

• Effective masses⇔self-energies in the RMF approximation $m_{AZ}^* = Am + E_{AZ}^0$

$$\mathcal{L} = -\sum_{i \in F} \overline{\psi}_{i} (\gamma_{\mu} D_{\mu i} + m_{i}^{*}) \psi_{i} - \frac{1}{2} \sum_{i \in S} \left[(D_{\mu i} \psi_{i})^{2} + m_{i}^{*2} \psi_{i}^{2} \right] + \sum_{i \in V} \left[(D_{\mu i} \psi_{\nu i} - D_{\nu i} \psi_{\mu i})^{2} - \frac{1}{2} m_{i}^{*2} \psi_{\mu i}^{2} \right]$$

$$+ \mathcal{L}_{\sigma \omega \rho} \quad n, p, t, {}^{3}\text{He}, \dots \qquad \text{4He, }^{6}\text{He}, \dots \qquad \text{d}, \dots$$

$$m_{AZ}^{*} = m_{AZ}^{\nu ac} - g_{S}^{AZ}(n) \langle \sigma \rangle$$

$$\approx m_{AZ}^{\nu ac} - A \mathbf{x}_{S}(n, T) g_{S}(n) \langle \sigma \rangle - Free \text{ parameter } 0 < \mathbf{x}_{S} < 1$$

$$H. \text{Pais et al, PRC97}(2018)045805$$

Calibrating the in-medium effects

H.Pais et al, PRC97(2018)045805

=> See Rémi's talk!

- 4 different data sets $X_i = 1, \dots, 4$ from INDRA ^{136,124}Xe+ ^{124,112}Sn @ 32 A.MeV*
- EoS Model: FSU-RMF
- Bayesian inference (NSMC**) of the unknown parameters
 θ_i = (T, n_B, x_s(T, n_B))_i directly from the mass fractions for each sample {ω(A, Z)}_i labelled by the radial velocity bin and data set i = (v_i, X_i)

$$p_{i}(\theta|\{\omega_{AZ}\}) = \frac{p_{\theta}}{Z} \prod_{AZ} \mathcal{L}(\omega_{AZ}^{i}|\theta) \quad \mathcal{L}(\omega_{AZ}^{i}|\theta) = e^{-\frac{\left(\omega_{AZ}^{exp}(i) - \omega_{AZ}^{th}(\theta)\right)^{2}}{2\sigma_{AZ}^{2}(i)}}$$

* A.Rebillard-Soulié et al, JPhysG 51(2023)015104 ** PyMultiNest: J. Buchner 10.1214/23-ss144 (2021)

Solid: FSU Dashed: DD2

• The temperature and density estimation is model independent

T.Custodio et al, arXiv:2407.02307

The temperature and density estimation is model independent The independent analyses of the 4 systems lead to ~ compatible

results for x(n,T)

This confirms the validity of the statistical approach

T.Custodio et al, arXiv:2407.02307

The temperature and density estimation is model independent The independent analyses of the 4 systems lead to ~ compatible results for x(n,T)This confirms the validity of the statistical approach The in-medium binding energy shift decreases with increasing temperature as expected Still, important effect for T as high as T=10 ! => increased cluster suppression wrt NSE

- A thermodynamically consistent formalism to calculate matter composition from a given microscopic energy functional
 - o Leptodermous approximation for the cluster free energy
 - o Effective mass with entrainment effects
 - o Subtraction of continuum states and in-medium modified surface energies

=> First microscopic evaluation of the impurity factor

- Improved treatment of the in-medium energy functional of light clusters
 - o Only the binding energy shift is extracted from the microscopic energy functional
 - o Calibration of the unknown coupling on INDRA data

=> Temperature dependent light clusters binding energy shifts

Collaboration

Multi-Component plasma

Cluster couplings calibration

- H.Dinh-Thi (Rice Univ., TX USA)
- F.Gulminelli, A.F.Fantina (LPC&Ganil, Caen)
- T.Custodio (Coimbra&LPC)
- F.Gulminelli, A.Rebillard-Soulié, R.Bougault, D.Gruyer (LPC&Ganil, Caen)
- H.Pais, C.Providencia, T.Mallik (Coimbra Univ.)

Master Projet MAC, In2p3 and IRP ACNu, CNRS Campus France PESSOA program (project PHC 47833UB)

Comparison with the parameter estimation from the classical ideal gas

Posteriors for the coupling modification x_s(n_B,T)

- The independent analyses of the 4 systems lead to compatible results as a function of T
- This confirms the validity of the statistical approach

Posteriors for the coupling modification x_s(n_B,T)

- The independent analyses of the 4 systems lead to compatible results as a function of T
- This confirms the validity of the statistical approach
- Quadratic fit (Python Imfit) x_s=aT²+bT+c
- Hyp: the n_B dependence can be neglected in the probed n_B range

Parameter	Unit	Median	1σ	2σ
a	${\rm MeV}^{-2}$	-0.00203	± 0.00003	± 0.00006
b	${\rm MeV^{-1}}$	0.01477	± 0.00047	± 0.00093
С		0.90560	± 0.0018	± 0.00355

Predictions for general purpose EoS

..... To be continued

Effect of the microscopic entropy and continuum subtraction

S.Mallik, FG, PRC 2021

D.Vigano et al, MNRAS 434(2013)123

D.Vigano et al, MNRAS 434(2013)123

OCP with cluster DoF

$$\mathcal{F}^{OCP}(A, Z, \rho_{gq}) = \mathcal{F}(\rho_{gq}) + \frac{F_{AZ}}{V_{WS}} = \mathcal{F}_{WS}$$

• Below drip: F_{AZ} is just the HFB free energy

Nuclear distribution in the inner crust

Carreau 2020, A&A, 640, A77

T.Fischer et al Phys. Rev. C 102(2020) 055807

SN dynamics and cluster in-medium effects

- The energy deposition in the gain region depends on the position of the v-sphere
- Coherent scattering off nuclei is a crucial source of opacity
- Composition depends on the in-medium modifications to the binding energy

T.Fischer et al Phys. Rev. C 102(2020) 055807

SN dynamics and cluster in-medium effects

(Radius ~200 km)

(Radius ~50 km)

binding energy

Chemical constants from multi-

Applications

- Impurity factor
 => extension to pasta to be done
- e-transport coefficients
 => To be calculated

$$\begin{bmatrix} 10^{2} \\ 10^{1} \\ 10^{1} \\ 10^{0} \\ 10^{-1} \\ 10^{-2} \\ 10^{-3} \\ 10^{-8} \\ 10^{-7} \\ 10^{-7} \\ 10^{-6} \\ 10^{-7} \\ 10^{-6} \\ 10^{-5} \\ 10^{-5} \\ 10^{-4} \\ 10^{-3} \\ 10^{-3} \\ 10^{-3} \\ 10^{-7} \\ 10^{-6} \\ 10^{-5} \\ 10^{-4} \\ 10^{-3} \\ 10^{-3} \\ 10^{-2} \\ 10^{-3} \\ 10^{-7} \\ 10^{-6} \\ 10^{-5} \\ 10^{-4} \\ 10^{-3} \\ 10^{-2} \\ 10^{-3} \\ 10^{-2} \\ 10^{-3} \\ 10^{-2} \\ 10^{-3} \\ 10^{-7} \\ 10^{-6} \\ 10^{-5} \\ 10^{-4} \\ 10^{-3} \\ 10^{-2} \\ 10^{-3} \\ 10^{-2} \\ 10^{-3} \\ 10^{-2} \\ 10^{-3} \\ 10^{-2} \\ 10^{-3} \\ 10^{-3} \\ 10^{-2} \\ 10^{-3$$

T.Carreau, A.Fantina, FG submitted to A&A

$$\kappa = \frac{\pi k_F^3 T}{12e^4 m_e^{*2} \Lambda_{ep}^{\kappa}},$$

$$\sigma = \frac{k_F^3}{4\pi e^2 m_e^{*2} \Lambda_{ep}^{\sigma}},$$

$$\eta = \frac{k_F^5}{60\pi e^4 m_e^{*2} \Lambda_{ep}^{\eta}},$$

$$\Lambda_{ep}^{\eta}(A, Z, d) = \int_{q_0}^{2k_F} dq \ q^3 u^2(q) S_q(A, Z, d) \left(1 - \frac{q^2}{4m_e^{*2}}\right)$$

$$\Lambda_{ep}^{\eta}(A, Z, d) = \int_{q_0}^{2k_F} dq \ q^3 u^2(q) S_q(A, Z, d) \left(1 - \frac{q^2}{4m_e^{*2}}\right) \left(1 - \frac{q^2}{4k_F^2}\right)$$

Potekhin, et al. (1999), A&A, 346, 34 Chugunov & Yakovlev (2005) ARep, 49, 724 •

Phenomena

- NS oscillations
- PNS cooling (SN1987a ??)
- Mergers ???

Strategy

- What exactly do we need to calculate?
- Which format (table, code..)?
- Microscopic functional: calculate for BSK22-26 ?
- Meta-modelling: Tews functionals? Most probable posterior EoS only?

T>O: continuum states Mean field potential Double counting of continuum states if we switch to cluster DoF Easy subtraction in the GC ensemble $Z_{\beta\mu_{n}\mu_{p}} = \prod_{i,q} \left(1 + \exp\left(\alpha_{q} - \beta e_{i}^{q}\right) \right)$ $\Omega_{N} = \Omega_{Ng} - \Omega_{g} \qquad \Omega_{N} = -T \ln \mathscr{Z}_{\beta\mu_{n}\mu_{p}}^{(N)}$ 0.14 ▲ Total HF density 0.12 Cluster 0.1 p(r) [fm⁻³] 0.08 0.06 Tubbs&Koonin, ApJ 232 (1979) L59 Free nucleons 0.04 Bonche, Levit, Vautherin NPA427(1984)278 0.02 electrons 0 20 0 5 10 15 25 30 35 $F_N(A, I, \rho_q, y_q) =$ r (fm) $= -TV_N \ln z_{\beta,\mu_n,\mu_n}^{mf,N} + \mu_n N_n + \mu_p N_p + E_{coul} + E_{surf}(A, I)$ $= V_{N} \left[v(n_{c}, \delta_{c}) - v(n_{g}, \delta_{g}) - \sum \left(U_{c,q} n_{c,q} - U_{g,q} n_{g,q} \right) \right]$ $-\sum \left[\frac{2V_N}{3}\left\{\xi_{c,q}-\xi_{g,q}\right\}-\mu_q N_q\right];+E_{coul}+E_{surf}(A,I)$

S.Mallik, FG, to be submitted

Surface tension and correlations with NM properties

The ambiguity is under control if we make a UNIFIED modelling

T.Carreau, PRC 2020 + Thomas Carreau, PhD thesis

Geometry fluctuations

• $d\mathcal{F}_{MCP}(\{n_{AZ,d}\}) = 0$ leads to:

 $p_{AZ,d} \propto \exp\beta \left[N\mu_n + Z\mu_p - F_{i,d} + R_{AZ,d}(n_e) \right]$

Schneider, Horowitz PRL 2015

Geometry fluctuations

Solid: $\rho_B = 0.01 \text{ fm}^{-3}$ Dashed: $\rho_B = 0.03 \text{ fm}^{-3}$

C.Barros, D.Menezes, FG, PRC 101 (2020) 035211

OCP with cluster DoF

$$\mathcal{F}^{OCP}(A, Z, \rho_{gq}) = \mathcal{F}(\rho_{gq}) + \frac{F_{AZ}}{V_{WS}} = min$$

Carreau 2020, A&A, 635, A84

=> The uncertainty in the shell treatment is within the fonctional uncertainty.

$$\mathcal{F}_{AZ}(A, Z, \rho_{gq}) = \mathcal{F}_{\mu}(\rho_{gq}) + \frac{F_i}{V_{AZ}} = min$$

Carreau 2020, A&A, 635, A84

=> Importance of a unified treatment

Plan

- 1. Motivation: transport properties in compact stars
- 2. From a microscopic EDF to the finite temperature nuclear distribution: unified T>0 EoS for astrophysics
- 3. Results: melting temperature and impurity factor: the unexpected role of light nuclear clusters

M.Fortin et al. PRC 94, 035804

Clusters in-medium effects

- the ETF approach is not very realistic for light clusters!
- Alternative approaches: inmedium modified meson couplings H.Pais,
 FG PRC 97(2018)045805; quasi-particle virial expansion G.Roepke, PRC101 (2020) 064310

T.Fischer et al PRC102(2020)

Effect on the CCSN dynamics

T.Fischer et al PRC102(2020) •

T.Fischer et al Phys. Rev. C 102(2020) 055807

SN dynamics and cluster in-medium effects

- The energy deposition in the gain region depends on the position of the v-sphere
- Neutrino opacity is due to scattering off nucleons and nuclei
- Composition depends on the in-medium modifications to the
- binding energy

T.Fischer et al Phys. Rev. C 102(2020) 055807

SN dynamics and cluster in-medium effects

• and v luminosity

OCP with cluster DoF $F_{AZ} = F_{AZ}^0 + T\left(ln\frac{\lambda_{AZ}^3(M^*)}{gV_f} - 1\right)$

- CM degree of freedom: translation (T>T_m)
- n-p interaction: (only) bound neutrons are entrained by the ion

Essentially He clusters @high density !

H.DinhThi et al, A&A 2023

Dinh-Thi 2023, to be submitted

The cluster distribution

The cluster distribution

Dinh-Thi 2022, to be submitted

Calibrating the in-medium effects

$$K_{C}(N,Z) = \frac{n_{NZ}}{n_{01}^{Z}n_{10}^{N}} = \frac{\omega_{NZ}}{A\omega_{01}^{Z}\omega_{10}^{N}}n_{B}^{-(A-1)}$$

$$n = density$$

$$\omega = mass \ fraction$$

- INDRA Xe+Sn central collision data sampled in bins of radial velocity(=emission time?)
- Mapping: $v_i EXP \Leftrightarrow (n_B, T, y_P)_i RMF$
- y_P deduced from data
- T,n_B tentatively deduced from a (modified) ideal gas formula
- Hyp: x_s=cst.
- $=> x_s = 0.935 \pm 0.025$

H.Pais & INDRA coll. PRL 125(2020)012701