In collaboration with Yong-Beom Choi, Hana Gil, Chang Ho Hyun arXiv:2407.19647

Alpha-decay half-lives and symmetry energy in KIDS model

Chang-Hwan Lee / Pusan National University

Astro-Hadron Physics in the Multi-messenger Era

Astro-Hadron Physics Group@PNU (Astro) Hee-Suk Cho, Eunjung Lee, Gyeongbin Park (Hadron) Yong-Beom Choi, Chang-hoon Song, Dae Ik Kim

Theoretical activities in Korea for RAON

before RAON

.

- Properties of Hadrons
- Dense Matter Equation of State
 - Structure of Neutron Stars
 - Gravitational Waves

K108 - a versatile framework for the nuclear EoS and EDF

KIDS (Korea-IBS-Daegu-SKKU) formalism

Expansion rule

Energy density of many-nucleon system expanded in the power of the Fermi momentum

Fitting rule

Determine the coefficients to reproduce neutron star properties and finite nuclear properties

$$\mathscr{E}(\rho, \delta) = \mathscr{T}(\rho, \delta) + \sum_{i=0}^{N-1} c_i(\delta) \rho^{1+i/3}$$

 $c_i(\delta) = \alpha_i + \beta_i \delta^2$
 $\delta = (\rho_n - \rho_p)/\rho$

Expansion parameter: $k_F/m_\rho < 1$ for $\rho < 8\rho_0$.

PRC 98, 065805 (2018), PRC 100, 014312 (2019) EPJA 56, 157 (2020), PRC 106, 035802 (2022)

Number of parameters & convergence test

4 parameters for pure neutron matter (β_i) 3 parameters for symmetric nuclear matter (α_i)

TABLE TV. Values of $c_i(1)$ fitted to APR EoS of PNM. The unit of c_i is MeV fm ³⁺ⁱ and the units of J, L, K_{sym} , Q_{sym} , and R_{sym} are MeV.													
Model	N	$c_0(1)$	$c_1(1)$	$c_2(1)$	$c_3(1)$	$c_4(1)$	$c_{5}(1)$	χ_n^2	N. N	L	K _{sym}	$Q_{\rm sym}$	R _{sym}
P3	3	-266 72	133.50	281.38	-	-	-	5.3×10^{-4}	32.6	53.5	-129.7	422.3	-2421.8
P4	4	-407 <mark>9</mark> 4	990.09	-1321.86	937.14	-	—	1.4×10^{-4}	32.	49.2	-156.3	583.1	-2469.7
P5	5	-224 16	-479.28	2814.48	-3963.71	2075.79		6.3×10^{-5}	33.0	51.4	-166.8	461.4	-1388.4
P6:	6	-224 <mark>.</mark> 81	-473.46	2795.50	-3935.18	2056.11	4.94	6.3×10^{-5}	33.D	51.4	-166.8	461.6	-1391.7
P6b	6	-283.99	110.63	604.05	-10.59	-1312.44	1117.70	6.4×10^{-5}	33.0	51.5	-163.8	450.0	-1545.9
P6c	6	-313.98	400.88	-463.41	1864.00	-2891.61	1630.37	6.5×10^{-5}	33.0	51.5	-162.3	446.6	-1631.2

J, L, K_{sym} , ... can be chosen independently, so one can check the correlation more systematically.

$$S(\rho) = J + L x + \frac{1}{2} K_{\text{sym}} x^2 + \mathcal{O}(x^3) \qquad K_{\tau} \equiv K_{\text{sym}} - 6L - \frac{Q_0}{K_0} L. \qquad x \equiv (\rho - \rho_0)/3\rho_0$$

PRC 100, 014312 (2019)

Speed of sound

EPJA 56, 157 (2020)

KIDS-A, B, C, D

Nuclear matter: determine 7 model constants

-
$$\rho_0, E_B, K_0, J, L, K_{\text{sym}}, Q_{\text{sym}}$$

- vary K₀ (220-260:10), J (30-34:1), L (40-70:1), Kτ (-360,-420,-480)
- Nuclear properties: determine additional 2 model constants (9 in total)
 - Binding energy and charge radius of ⁴⁰Ca, ⁴⁸Ca and ²⁰⁸Pb -

$$\begin{split} E(\rho, \,\delta) &= E(\rho) + S(\rho)\delta^2 + O(\delta^4), \\ E(\rho) &= E_B + \frac{1}{2}K_0 x^2 + O(x^3), \\ S(\rho) &= J + Lx + \frac{1}{2}K_{\rm sym} x^2 + \frac{1}{6}Q_{\rm sym} x^3 + O(x^4). \end{split}$$

Table 1. EoS parameters (J, L, K_{τ}) giving the two smallest χ_6^2 values for each K_0 value.

K_0	$(J, L K_{\tau})$	$\chi^{2}(\times 10^{-5})$
220	(33, 50, -480)	9.45
	(34, 63, -480)	8.61
230	(33, 66, -420)	3.04
	(33, 52, -480)	3.01
240	(32, 68, -360)	0.75
	(32, 58, -420)	0.89
250	(30, 41, -360)	1.50
	(31, 58, -360)	1.43
260	(30, 47, -360)	5.55
	(31, 63, -360)	6.03

KIDS-A, B, C, D

• Neutron star

• Final selection

$11.8 \le R_{1.4} \le 12.5 \text{ km}$

		a particular and the		
Model	K_0	J	L	K _{sym}
KIDS-A	230	33	66	-139.5
KIDS-B	240	32	58	-162.1
KIDS-C	250	31	58	-91.5
KIDS-D	260	30	47	-134.5
			Sec. 1	

Hadron-quark phase transition with Vector MIT Bag & KIDS

Frot. Astron. Space Sci. 11, 1421839 (2024)

Examples of applications - quadruple deformation

FIG. 3. Calculated quadrupole deformation $\beta_{2,p}$ for bound nuclei obtained by employing the KIDS-A–D models.

PRC 108, 044316 (2023)

Formulas for alpha-decay half-lives

Basic ingredients

- WKB approximation
- Cluster-formation model
- Folding potential

$$T_{1/2} = \frac{\hbar \ln 2}{\Gamma},$$

$$\Gamma = P_{\alpha} N_f \frac{\hbar^2}{4\mu} P_{\text{tot}}.$$

$$P_{\alpha} = \frac{2S_p + 2S_n - S_{\alpha}}{S_{\alpha}},$$

with

$$N_{f} = \frac{1}{2} \int_{0}^{\pi} N_{f}(\beta) \sin\beta d\beta,$$

$$P_{\text{tot}} = \frac{1}{2} \int_{0}^{\pi} \exp\left[-2 \int_{r_{2}(\beta)}^{r_{3}(\beta)} k(r', \beta) dr'\right] \sin\beta d\beta,$$

$$N_{f}(\beta) \approx \left[\int_{r_{i}(\beta)}^{r_{2}(\beta)} \frac{dr'}{2k(r', \beta)}\right]^{-1},$$

$$k(r, \beta)| = \sqrt{\frac{2\mu}{\hbar^{2}}} |Q_{\alpha} - V(r, \beta)|.$$

$$V(r, \beta) = V_{l}(r) + V_{C}(r, \beta) + V_{N}(r, \beta),$$

$$V_{l}(r) = \frac{\hbar^{2}}{2\mu} \frac{(l+1/2)^{2}}{r^{2}},$$

$$V_{C}(r, \beta) = \int dr_{d}dr_{\alpha}\rho_{\alpha}^{p}(r_{d})\rho_{\alpha}^{p}(r_{\alpha})\frac{e^{2}}{s},$$

$$V_{N}(r, \beta) = \lambda \int dr_{d}dr_{\alpha}\rho_{d}(r_{d})\rho_{\alpha}(r_{\alpha})v(s).$$

$$v(s) = 7999 \frac{e^{-4s}}{4s} - 2134 \frac{e^{-2.5s}}{2.5s} - 276 \left(1 - 0.005 \frac{Q_{\alpha}}{A_{\alpha}}\right) \delta(s),$$

$$\rho_{\alpha}(r) = 0.4229 \exp(-0.7024r^{2})$$

$$N_{f} = \frac{1}{2} \int_{0}^{\pi} N_{f}(\beta) \sin\beta d\beta,$$

$$P_{\text{tot}} = \frac{1}{2} \int_{0}^{\pi} \exp\left[-2 \int_{r_{2}(\beta)}^{r_{3}(\beta)} k(r', \beta) dr'\right] \sin\beta d\beta,$$

$$N_{f}(\beta) \approx \left[\int_{r_{i}(\beta)}^{r_{2}(\beta)} \frac{dr'}{2k(r', \beta)}\right]^{-1},$$

$$k(r, \beta)| = \sqrt{\frac{2\mu}{\hbar^{2}}} |Q_{\alpha} - V(r, \beta)|.$$

$$V(r, \beta) = V_{l}(r) + V_{C}(r, \beta) + V_{N}(r, \beta),$$

$$V_{l}(r) = \frac{\hbar^{2}}{2\mu} \frac{(l+1/2)^{2}}{r^{2}},$$

$$V_{C}(r, \beta) = \int dr_{d}dr_{\alpha}\rho_{d}^{p}(r_{d})\rho_{\alpha}^{p}(r_{\alpha})\frac{e^{2}}{s},$$

$$V_{N}(r, \beta) = \lambda \int dr_{d}dr_{\alpha}\rho_{d}(r_{d})\rho_{\alpha}(r_{\alpha})v(s).$$

$$v(s) = 7999 \frac{e^{-4s}}{4s} - 2134 \frac{e^{-2.5s}}{2.5s} - 276 \left(1 - 0.005 \frac{Q_{\alpha}}{A_{\alpha}}\right) \delta(s),$$

$$\rho_{\alpha}(r) = 0.4229 \exp(-0.7024r^{2})$$

 P_{α} and Q_{α} from AME2020

Results: Half-life as a function of N_{par}

arXiv:2407.19647

- Results are mostly in [-0.5:0.5] \bullet Minima at N=126 •
- Tend to increase with large N •
- Shortest in KIDS-A •
- Longest in KIDS-D •

Results: Half-life as a function of Texp_{1/2}

arXiv:2407.19647

 $1 \text{ day} = 86,400 \text{ seconds} (\sim 10^5)$ T < 1 day: random distribution

T > 1 day: overshoots the experiment Small uncertainty in Γ gives large • difference

alpha-decay half-lives vs symmetry energy

 $T^{D}_{1/2}/T^{A}_{1/2}$ as a function of A_{par}

- The ratios are in the range 1.25-1.5 •
- For $A_{par} \leq 224$, ratio increases rather monotonically
- Above 224, there are minima at $A_{par}=230$ (Ra), 232 (Th), 234 (U) for which $N_{par}=142$
 - ** Is there any special meaning for $N_{par}=142$?
- Is the ratio 1.25-1.5 big enough?
 - ****** Neutron skin thickness of 208Pb: $\Delta R_{np}(KIDS-D)/\Delta R_{np}(KIDS-A) = 1.40$

Diagnose the origin of the correlation

- Tunneling barrier is determined by V_C and V_N
- Barrier builds up at r~8.5 fm
- Density in the surface region is critical
- V_C is identical in the two models
- In r \leq 6 fm, nuclear potential of KIDS-A is larger
- $\bullet~$ In 6-10 fm, KIDS-A is smaller: more cancellation with V_C
- Stronger cancellation makes barrier lower \rightarrow shorter half-life
- Lower density in the core with KIDS-A
- Depletion in the core is compensated by the distribution in 6-10 fm
- Symmetry energy \rightarrow different density & potential \rightarrow different half-life

	Model	J	L
ion	KIDS-A	33	66
	KIDS-D	30	47

Summary

- In KIDS formalism provides a unified description of finite nuclei and infinite nuclear matter.
- Models are constrained by nuclear properties and neutron star data.
- Alpha-decay half-lives are reproduced with factor 1/3 3

Soft symmetry energy gives longer half-lives.

- Interesting behavior happens at N=142.

