Chang-Hwan Lee / Pusan National University

1

Alpha-decay half-lives and symmetry energy in KIDS model

In collaboration with Yong-Beom Choi, Hana Gil, Chang Ho Hyun arXiv:2407.19647

Astro-Hadron Physics in the Multi-messenger Era

2

Astro-Hadron Physics Group@PNU (Astro) Hee-Suk Cho, Eunjung Lee, Gyeongbin Park (Hadron) Yong-Beom Choi, Chang-hoon Song, Dae Ik Kim

Theoretical activities in Korea for RAON

3

- Properties of Hadrons
- Dense Matter Equation of State
	- Structure of Neutron Stars
		- Gravitational Waves

… …

4

Expansion parameter: $k_F/m_\rho < 1$ *for* $\rho < 8\rho_0$.

KIDS - a versatile framework for the nuclear EoS and EDF

KIDS (Korea-IBS-Daegu-SKKU) formalism

• **Expansion rule**

Energy density of many-nucleon system expanded in the power of the Fermi momentum

• **Fitting rule**

Determine the coefficients to reproduce neutron star properties and finite nuclear properties

$$
\mathcal{E}(\rho, \delta) = \mathcal{I}(\rho, \delta) + \sum_{i=0}^{N-1} c_i(\delta) \rho^{1+i/3}
$$

$$
c_i(\delta) = \alpha_i + \beta_i \delta^2
$$

$$
\delta = (\rho_n - \rho_p) / \rho
$$

PRC 98, 065805 (2018), PRC 100, 014312 (2019) EPJA 56, 157 (2020), PRC 106, 035802 (2022)

Number of parameters & convergence test *PRC 100, 014312 (2019)*

4 parameters for pure neutron matter (β_i) *3 parameters for symmetric nuclear matter* (α_i)

5

J, L, Ksym, … can be chosen independently, so one can check the correlation more systematically.

$$
S(\rho) = J + L x + \frac{1}{2} K_{sym} x^2 + \mathcal{O}(x^3) \qquad K_{\tau} \equiv K_{sym} - 6L - \frac{Q_0}{K_0} L, \qquad x \equiv (\rho - \rho_0)/3\rho_0
$$

Speed of sound

6

EPJA 56, 157 (2020)

KIDS-A, B, C, D

• **Nuclear matter: determine 7 model constants**

- vary K₀ (220-260:10), J (30-34:1), L (40-70:1), K_T (-360,-420,-480)
- **Nuclear properties: determine additional 2 model constants (9 in total)**
	- Binding energy and charge radius of 40Ca, 48Ca and 208Pb

$$
E(\rho, \delta) = E(\rho) + S(\rho)\delta^2 + O(\delta^4),
$$

\n
$$
E(\rho) = E_B + \frac{1}{2}K_0x^2 + O(x^3),
$$

\n
$$
S(\rho) = J + Lx + \frac{1}{2}K_{sym}x^2 + \frac{1}{6}Q_{sym}x^3 + O(x^4).
$$

Table 1. EoS parameters (J, L, K_τ) giving the two smallest χ_6^2 values for each K_0 value.

K_0	(J, LK_{τ})	$\chi^2(\times 10^{-5})$
220	$(33, 50, -480)$	9.45
	$(34, 63, -480)$	8.61
230	$(33, 66, -420)$	3.04
	$(33, 52, -480)$	3.01
240	$(32, 68, -360)$	0.75
	$(32, 58, -420)$	0.89
250	$(30, 41, -360)$	1.50
	$(31, 58, -360)$	1.43
260	$(30, 47, -360)$	5.55
	$(31, 63, -360)$	6.03

$$
- \rho_0, E_B, K_0, J, L, K_{sym}, Q_{sym}
$$

• **Neutron star** • **Final selection**

11.8 ≤ R1.4 ≤ 12.5 km

A STATISTICS OF THE REAL PROPERTY.

KIDS-A, B, C, D

R [km]

Hadron-quark phase transition with Vector MIT Bag & KIDS

Frot. Astron. Space Sci. 11, 1421839 (2024)

Examples of applications - quadruple deformation *PRC 108, 044316 (2023)*

FIG. 3. Calculated quadrupole deformation $\beta_{2,p}$ for bound nuclei obtained by employing the KIDS-A-D models.

10

Formulas for alpha-decay half-lives

Basic ingredients

- WKB approximation
- Cluster-formation model
- Folding potential

$$
T_{1/2} = \frac{\hbar \ln 2}{\Gamma},
$$

\n
$$
\Gamma = P_{\alpha} N_f \frac{\hbar^2}{4\mu} P_{\text{tot}}.
$$

\n
$$
P_{\alpha} = \frac{2S_p + 2S_n - S_{\alpha}}{S_{\alpha}},
$$

with

$$
N_{f} = \frac{1}{2} \int_{0}^{\pi} N_{f}(\beta) \sin \beta d\beta,
$$

\n
$$
P_{tot} = \frac{1}{2} \int_{0}^{\pi} \exp \left[-2 \int_{r_{2}(\beta)}^{r_{3}(\beta)} k(r', \beta) dr' \right] \sin \beta d\beta,
$$

\n
$$
N_{f}(\beta) \approx \left[\int_{r_{1}(\beta)}^{r_{2}(\beta)} \frac{dr'}{2k(r', \beta)} \right]^{-1},
$$

\n
$$
V(r, \beta) = V_{I}(r) + V_{C}(r, \beta) + V_{N}(r, \beta),
$$

\n
$$
V_{I}(r) = \frac{\hbar^{2}}{2\mu} \frac{(l + 1/2)^{2}}{r^{2}},
$$

\n
$$
V_{C}(r, \beta) = \int dr_{d} dr_{\alpha} \rho_{d}^{p}(r_{d}) \rho_{\alpha}^{p}(r_{\alpha}) \frac{e^{2}}{s},
$$

\n
$$
V_{N}(r, \beta) = \lambda \int dr_{d} dr_{\alpha} \rho_{d}^{p}(r_{d}) \rho_{\alpha}(r_{\alpha}) v(s).
$$

\n
$$
v(s) = 7999 \frac{e^{-4s}}{4s} - 2134 \frac{e^{-2.5s}}{2.5s} - 276 \left(1 - 0.005 \frac{Q_{\alpha}}{A_{\alpha}}\right) \delta(s),
$$

\n
$$
\rho_{\alpha}(r) = 0.4229 \exp(-0.7024r^{2})
$$

 P_{α} and Q_{α} from AME2020

Results

13

- Results are mostly in [-0.5:0.5] $\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$ Minima at N=126 \bigodot
- Tend to increase with large N $\begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}$
- Shortest in KIDS-A \bigodot
- Longest in KIDS-D

Results: Half-life as a function of Npart

arXiv:2407.19647

 $T > 1$ day: overshoots the experiment Small uncertainty in Γ gives large difference

14

Results: Half-life as a function of Texp_{1/2}

arXiv:2407.19647

1 day = $86,400$ seconds $(\sim 10^5)$ T < 1 day: random distribution $\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$

alpha-decay half-lives vs symmetry energy

$T_{1/2}/T_{1/2}$ as a function of A_{par}

- The ratios are in the range 1.25-1.5 $\begin{pmatrix} 1 \\ 1 \\ 2 \end{pmatrix}$
- \bullet For $A_{par} \leq 224$, ratio increases rather monotonically
- \bullet Above 224, there are minima at A_{par} =230 (Ra), 232 (Th), 234 (U) for which N_{par} =142
	- ** Is there any special meaning for N_{par} =142 ?
- Is the ratio 1.25-1.5 big enough?
	- ** Neutron skin thickness of 208Pb: ΔR_{np} (KIDS-D)/ ΔR_{np} (KIDS-A) = 1.40

Diagnose the origin of the correlation

- Tunneling barrier is determined by V_C and V_N
- Barrier builds up at r~8.5 fm
- Density in the surface region is critical
- \bullet V_C is identical in the two models
- In r≤6 fm, nuclear potential of KIDS-A is larger $\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$
- In 6-10 fm, KIDS-A is smaller: more cancellation with V_C
- Stronger cancellation makes barrier lower \rightarrow shorter half-life $\begin{pmatrix} 1 \\ 1 \\ 2 \end{pmatrix}$
- Lower density in the core with KIDS-A
- Depletion in the core is compensated by the distribution in 6-10 fm $\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$
- \circ Symmetry energy \rightarrow different density & potential \rightarrow different half-life

16

Summary

- KIDS formalism provides a unified description of finite nuclei and infinite nuclear matter.
- Models are constrained by nuclear properties and neutron star data.
- Alpha-decay half-lives are reproduced with factor 1/3 3

Soft symmetry energy gives longer half-lives.

- \bullet Interesting behavior happens at N=142.
-

