

Hyperon and Hypernuclei production in Ag+Ag collisions at 1.58 AGeV beam energy ($\sqrt{s_{NN}} = 2.55 \text{ GeV}$) with the HADES experiment

Marten Becker

for the HADES collaboration,

Justus-Liebig-Univiersität Giessen

NUSYM 2024, XIIth International Symposium on Nuclear Symmetry Energy, Caen

Marten Becker (JLU Giessen)

Hyperon and Hypernuclei reconstruction

1/15

Motivation

- 2 The HADES Experiment & Data Sample
- O Hypernuclei reconstruction
- 4 Hyperon reconstruction
- **5** Λ/Σ^0 Estimation
- 6 Statistical model evaluation

Motivation

- Investigation of the QCD phase diagram at high μ_B and moderate T.
- HADES provides various strategies for characterization of the collision:
 - Oilepton measurements
 - e Hadron multiplicities
 - Illing a collectivity
- What is the impact of medium effects on strangeness production close to threshold?
- Are hadrons produced in a thermal system?
- How is strangeness produced at high μ_B and moderate temperatures?

Nature Physics volume 15, pages 1040–1045 (2019)

Motivation - Hyperons and Hypernuclei

Strangeness production at threshold energy and high baryon density is sensitive to medium effects:

- High baryon density at SIS18 energies leads large cross sections of Hypernuclei production
- CBM will cover the energy range of maximum production rate around $\sqrt{s_{NN}} \approx 5$ GeV.

- No experimental measurements of Σ^0 baryon production in AA collisions near threshold due to its difficult reconstruction.
- In p+p collisions, $\Lambda_{f.o.}/\Sigma^0$ strongly increasing towards threshold

Phys.Lett.B 781 (2018) 735-740, arXiv:2301.11766

Motivation - State of nuclear matter

Similar conditions for neutron star merger events and heavy ion collisions at SIS18 energies: T < 70 MeV with a nuclear density of $\rho \approx 2 - 3\rho_0$, impact of YN interactions

Marten Becker (JLU Giessen)

Hyperon and Hypernuclei reconstruction

12.09.2024

The HADES experiment and PID

HADES - High Acceptance Dielectron Spectrometer

- Located at GSI in Darmstadt
- Successful operation for more than 20 years
- Upgraded RICH for lepton identification
- New ECal especially for photon reconstruction

Schematic view of the setup during data taking

High resolution in β -momentum for PID

- 4 layers of Multiwire Drift Chambers for tracking & momentum reconstruction
- Magnet coil inbetween MDC layers 2 and 3
- RPC and TOF for velocity information

Ag+Ag at $\sqrt{s_{NN}}=2.55\,\text{GeV}=\Lambda_{NN}$ threshold

Weak decay reconstruction in HADES

- Weak decays result in a lifetime of $\approx 10^{-10}\,{\rm s},$ which allows a secondary vertex reconstruction
- Highly correlated decay topology parameters are evaluated by artificial neural networks TMVA: arXiv:physics/0703039v5 [physics.data-an]
- Background suppression factor 10⁴ allows high precision multi-differential analysis for the most common hadrons with strangeness.

Schematic weak decay topology (not to scale)

Large phase space coverage of Λ allowing for model independent extrapolation.

12.09.2024

Hypernuclei - Reconstruction

- Hypertriton ${}^{3}_{\Lambda}H$: binding energy of 0.79 MeV/A, as lightest known hypernucleus
- Hyperhydrogen4 ${}^{4}_{\Lambda}H$: binding energy of 2.63 MeV/A, more stable than ${}^{3}_{\Lambda}H$: $B({}^{4}_{\Lambda}H) \approx 3.3B({}^{3}_{\Lambda}H)$
- HADES can measure 2 or 3 body decays of Hypernuclei

First Hypernuclei reconstruction in Heavy-ion collisions at such low energies in the participant region!

Hypernuclei - Lifetime measurement

- Use 2-body decays for lifetime measurements
- Competitive lifetime extraction compared to previously measured Hypernuclei lifetimes
- Methodology tested on well known A and K_s^0 hadrons

Blue line: free A lifetime, Black line: world average

The double strange Ξ^- hyperon

- Measurement via double weak decay chain
- Both decays selected by the neural network for weak decay recognition
- First measurement in sub-threshold AA collisions

 First data at low energies of particular interest for model constrains and understanding of (multi)strange hadron production at low energies

Σ^0 reconstruction

- The new ECal allows the reconstruction of $\Sigma^0\to\Lambda\gamma$ for the first time in AA collision
- Especially close to the production threshold only pp data is available
- $\bullet\,$ Achieved significance of ≈ 10 with a S/BG on the order of 1%
- Signal also extracted in the Λe[±] conversion channel by pairing only one of the conversion leptons with the Λ, but only a significance of ≈ 3 can be achieved.
- Feasibility study in p+p collisions at 4.5 GeV, ongoing attempts to extract Σ⁰ electromagnetic form factor

Clear reconstructed Σ^0 signal in a subthreshold AA collision!

Λ/Σ^0 ratio

- $R_{\Lambda/\Sigma^0} = N_{\Lambda_{rec}} / N_{\Sigma^0_{rec}} \cdot \epsilon_{\gamma}$
- Dedicated efficiency correction accounting for differences in simulation and data
- Systematic error estimation by variation of cut sets, choice of side bands and splitting in subsets; ECal timing resolution dominant
- $R_{\Lambda/\Sigma^0} = 4.2 \pm 0.9$
- $M(\Sigma^0, 0-40\,\%){=}(15.7\pm3.2)\cdot10^{-3}/\text{evt}$

 Λ/Σ^0 ratio in pp collisions highly dependent on available phase space: Obvious deviation of AA from pp collisions.

Statistical model collision parametrization

- Extracted freeze out ratio $R'_{\Lambda/\Sigma^0} = 3.2 \pm 0.7$ delivers estimation of the temperature: $T = \Delta m/\ln(R') \approx 66 \text{ MeV}$
- Thermal-FIST
 - **()** No strangeness: $T = 74 \pm 6$ MeV
 - $\textcircled{\textbf{O}} \quad \text{With strangeness:} \ \mathcal{T} = 66 \pm 2 \, \text{MeV}$
- Transport models (R'_{Λ/Σ^0})
 - GiBUU (4.0)
 - SMASH (2.3)
 - UrQMD (2.1)

differ slightly

- $\bullet\,$ Fit independent of Σ^0 due to nice agreement and
 - Ξ^- due to large uncertainties

Conclusion: Σ^0 production in good agreement to thermal model!

GiBUU (Phys. Rept. 512 (2012) 1-124), UrQMD (Nucl. Phys. 41 (1998) 225-370), SMASH (10.1103/PhysRevC.94.054905), Thermal-FIST (arXiv:1901.05249)

Hyperon and Hypernuclei reconstruction

Summary

- Successful usage of aNN for weak decay reconstruction
- Various light Hypernuclei can be measured and analysed
- Lifetime estimation of the Hypernuclei are competitive with the world data
- High precision measurement of $\Lambda;$ Ξ^- and Σ^0 measured for the first time in this energy regime
- $\bullet~\Xi^-$ yield important for model constrains
- Freeze-out ratio: $R'_{\Lambda/\Sigma^0} = 3.2$ can be directly translated in a temperature estimation $T = \Delta m/\ln(R') \approx 66 \text{ MeV}$ independent of any additional measurement
- Σ^0 production rate agrees to thermal fits with while transport models differ

The HADES collaboration

Backup - Comparison to world data

- $R_{\Lambda/\Sigma^0} = N_{\Lambda_{rec}} / N_{\Sigma^0_{rec}} \cdot \epsilon_{\gamma} \cdot \epsilon_{\beta}, \\ \epsilon_{\gamma} = 0.028 \& \epsilon_{\beta} = 0.40$
- ϵ_{γ} extracted from PLUTO generated Σ^{0} in experimental data
- *ϵ_β* correction due to missing energy dependent resolution in ECal simulation & detector cell instabilities.
- ϵ_{β} estimated from data (leptons)
- Systematic error estimation by variation of cut sets, choice of side bands and splitting in subsets; ECal timing resolution dominant
- $R_{\Lambda/\Sigma^0} = 4.2 \pm 0.9$
- $M(\Sigma^0, 0-40\,\%){=}(15.7\pm3.2)\cdot10^{-3}/\text{evt}$

 Λ/Σ^0 ratio in pp collisions highly dependent on available phase space: Obvious deviation of AA from pp

12.09.2024

15/15

Backup - Data driven efficiency correction

- e^\pm and γ behave the same in the electromagnetic calorimeter.
- Instabilities during the beamtime lead to time dependent timing information.
- Energy dependent efficiency correction adjusted by leptons measured in data.

Backup - Lambda MLP parameter

- Weak deacays as rare probe of the HIC
- Off-Vertex topology parameters highly dependent
- Ideal conditions for a multivariate analysis
- Pre-selection highly improves the performance

$$M(\Lambda) + M(\Sigma^{-}) + M(\Sigma^{0}) + M(\Sigma^{+}) = M(K^{+}) + M(K_{S}^{0}) + M(K_{L}^{0})$$

Centrality	Production rate $[10^{-2}/event]$				Σ^0/Λ
	Lambda	Σ^+	Σ^0	Σ^{-}	
0-10%	10.09	2.20	2.39	2.60	0.24
10-20%	6.00	1.36	1.48	1.61	0.25
20-30%	3.47	0.90	0.98	1.06	0.28

- Calculations performed by S.Spies, PhD Thesis: Strange Hadron Production in Ag+Ag Collisions at 1.58A GeV, 2022
- Consideration of strangness conservation in strong interaction and isospin asymmetry
- Tested on Kaons $N_u/N_d = 0.92$ and $K^+/2K_s^0 = 0.92 1.02$
- Measured value $\Lambda/\Sigma^0 = 3.2\pm0.7$ slightly below the calculated value of 4.0

Backup - Thermal Fist - with excited nuclei

- Ideal hadron gas model, strangness-canonical ensemble
- Energy dependent Breit Wigner with constant branching ratio
- K- can not be described in thermal equilibrium

 K^- in fit included: $\chi^2/Ndf = 6.87$

$$K^-$$
 from fit excluded: $\chi^2/Ndf = 2.09$

Backup - Thermal Fist - without nuclei

$$K^-$$
 in fit included: $\chi^2/Ndf=3.75$

$$K^-$$
 from fit excluded: $\chi^2/Ndf = 0.71$

