

XIIth International Symposium on Nuclear Symmetry Energy (NuSYM2024)

GANIL, Caen, France, September 9 – 13, 2024

Status of LAMPS for Nuclear Symmetry Energy at RAON

Byungsik Hong

Center for Extreme Nuclear Matters (**CENUM**), Korea University

Contents

- **1. Physics goal of LAMPS**
- 2. LAMPS detection system @ RAON
- 3. Detectors for low-energy experiments
- 4. Summary

Part 1.

Physics goal of LAMPS: Nuclear equation of state & symmetry energy

LAMPS

Main physics objective of LAMPS

• Equation of state (EoS) & symmetry energy E_{sym} of nuclear matter [$\delta = (N - Z)/(N + Z)$]:

$$E/A = \varepsilon(\rho,\delta) = \varepsilon(\rho,\delta=0) + \frac{E_{sym}(\rho)\delta^2 + \mathcal{O}(\delta^4) + \cdots$$

$$E_{sym}(\rho) = S_0 + \frac{L}{3} \left(\frac{\rho - \rho_0}{\rho_0} \right) + \frac{K_{sym}}{18} \left(\frac{\rho - \rho_0}{\rho_0} \right)^2$$

$$L = \frac{3}{\rho_0} P_{sym} = 3\rho_0 \frac{\partial E_{sym}(\rho)}{\partial \rho} \Big|_{\rho = \rho_0}, K_{sym} = 9\rho_0^2 \frac{\partial^2 E_{sym}(\rho)}{\partial \rho^2} \Big|_{\rho = \rho_0}$$

- Theoretical approach
 - Estimate of $\varepsilon(\rho, \delta)$ by using some density functionals or variational calculations
- Experimental approach
 - Constrain EoS & E_{sym} with the controlled laboratory experiments at specific densities (determined largely by the beam energy and less effectively by the system size)

NuSYM2024 @ GANIL

9-13 September 2024

Observables

- Requirements for EoS experiments
 - Systematic change of the system size and N/Z of the collision system
 - Systematic change of the beam energy to cover a wide range of $ho/
 ho_0$
 - Analysis of diverse observables as functions of the collision centrality and momentum
 - Better to preserve the symmetric configuration of the detection system
- Representative observables
 - Particle spectra and yield ratios of isospin mirror particles, such as n/p, ³H/³He, ⁷Li/⁷Be, π^{-}/π^{+} , etc.
 - Collective flow: $v_1 \& v_2$ of n, p, and fragments
 - Azimuthal angle dependence of n/p ratio relative to the reaction plane
 - Isoscaling phenomenon in nuclear multi-fragmentation process
 - Isospin transportation: isospin diffusion and drift
 - E1 transitions (giant and pygmy dipole resonances): peak position and magnitude (Some theories suggest that PDR is sensitive to the radius of the neutron skin for unstable nuclei.)
 - Angular dependence of the gamma emission
- Detectors
 - Large acceptance charged particle tracking (from pions to fragments)
 - Neutron (and gamma) detector
 - Event characterization detector for centrality and the reaction plane

NuSYM

Part 2.

LAMPS detection system @ RAON

LAMPS @ RAON

LAMPS

Overall design of LAMPS

- LAMPS: Large Acceptance Multi-Purpose Spectrometer
 - TPC with $\sim 3\pi$ sr acceptance for tracking light charged particles (Z=1,2,3)
 - Beam energy up to 250 MeV/u for 132 Sn; Intensity up to 10⁸ pps (TPC can take only $\sim 10^{4-5}$ pps)
 - Useful system not only for nuclear EoS, but also for nuclear structure

NuSYM

SC magnet

- Design parameters
 - Superconducting solenoid magnet
 - Dim.: 3,000(L) X 2,200(W) X 2,250(H) mm³
 - Diameter of bore: 1,610 mm —
 - Max. field: 1 Tesla
 - Variation of *B* field over TPC volume:
 - (Simulation) $\pm 0.94\%$
 - (Measurement) -0.86 ~ 0.67%

- Passive quench protection —
- Conduction cooling with 4 K vessel thermal shield and vacuum vessel
- Construction
 - Mfr. by Tesla Engineering Ltd., UK —
 - Installation completed at RAON in 2021 _

TPC: Performance test with prototype

LAMPS

NuSYM

TPC: Construction of real detector

LAMPS

TPC: Drift velocity measurement

- Cosmic muon trigger
 - Coincidence of two scintillators (scintillator size: 20 x 20 cm² each)
 - Trigger positions at 30, 60 and 90 cm with the drift fields of 115, 125 and 135 V/cm

Cosmic muon test

Drift velocity data

NuSYM

BTOF/FTOF

- Surrounding TPC for measuring the time-of-flight and providing trigger
- Number of scintillators & dimensions:
 - BTOF: (48) 1500 X 90 X 10 mm³ each
 - FTOF: (48) 500 X (90, 24) X 5 mm³ each
- MPPC readout from both ends
- Installation completed in 2022

TPC+BTOF/FTOF: Cosmic test

LAMPS

9-13 September 2024

- We have developed the LAMPS trigger electronics system (LTE).
- The integrated system (TPC+BTOF/FTOF+SC) is continuously taking the cosmic data using LTE.
- Some examples of the cosmic events triggered by TOF are displayed below:

LAMPS

NDA (Neutron detector array): Structure

NuSYM

NDA: Performance test with prototype

NuSYM2024 @ GANIL

NuSYM

NDA: Construction

- The complete detector system was developed, built, and tested using cosmic rays.
- Custom-made FADC were developed, produced, and tested.
- We will bring LAMPS NDA to RIBF/RIKEN in early 2025 and use it for the cluster structure Expt.

Part 3.

Detectors for the low-energy experiments

NuSYM

SC magnet & Active-Target TPC (AT-TPC)

NuSYM 2024

- Superconducting solenoid magnet
 - *B_{max}* = 1.5 T
 - Diameter & length of the detector installation space = 60 cm each
 - Commissioning successfully done in 2019

- Design of AT-TPC (Sejong Univ.)
 - Number of channels: > 3,000
 - $-\phi \simeq 40 \,\mathrm{cm}$
 - Cylindrical shape similar to the LAMPS TPC

AT-TPC: Beam test with prototype

- Beam test of two prototypes at HIMAC in Japan in Feb. 2023
 - Beams: p @ 100 MeV, ¹²C @ 200 MeV/u, 10⁶ ppp
 - Performance test for LAMPS detectors including AT-TPC [Y. Cheon et al., NIMA 1066, 169610 (2024)]
 - Analyzing ${}^{12}C(p,2p)$ Quasi-Free Scattering (QFS) events

NuSYM

AT-TPC: Some characteristics

0.4

- ↑ Spatial resolution vs. drift length
- ↗ Gain vs. GEM bias voltage
- $\rightarrow \Delta E$ vs. *E* for Si+CsI (PID)
- ← Correlation of dE/dx(TPC) vs. $\Delta E + E$ (Si+CsI) for protons

[NIMA 1066, 169610 (2024)]

LAMPS

KHALA: Korea high–resolution array of LaBr₃

- LaBr₃(Ce) fast-timing γ -detector array
 - Total 36 LaBr₃(Ce) modules
 - Characteristics: $R_t < 250 \text{ ps}$, $R_E < 3.5\%$
- Formed IDATEN Collaboration = KHALA + FATIMA
 - The largest acceptance fast-timing γ -detector array
 - Commissioning experiment at RIBF in June 2024

ZDS PID (preliminary)

 Some of isotopes, e.g., ⁹⁴Pd, ⁹⁶Pd, ⁹⁴Ru, have not yet been studied.

NuSYM

Si+Csl charged particle detector

- FAZIA: One block consists of 16 Si₁+Si₂+CsI telescopes with a crosssection of 2×2 cm².
 - New Si chips are being developed in Korea.

LAMPS

- New FEB electronics with modern components are manufactured in Korea.

200

NuSYM

R&D of Si sensors

Design of PiN sensor using TCAD: Simulation setup

LAMPS

Thickness:

720 µm

Channel

stop

- \rightarrow Results
 - Breakdown voltage point is close to -600 V
 - Enough to reach full depleted voltage (400 V)
- We are also developing 150 μ m-thick chips.
- ← We plan to build 4 FAZIA blocks by the end of 2025 for the experiments at RAON.

NuSYM 2024

Summary

- Purpose of LAMPS
 - Detailed investigation of nuclear equation of state (EoS) and symmetry energy
 - We are also exploring the possibility to use LAMPS for the nuclear structure.
- Status of the LAMPS detector system
 - All detector elements were developed, manufactured, and assembled.
 - Performance test with cosmic muons using LTE for the integrated system is in progress.
 - The high-energy beams from SCL2 at RAON will be available in ~2030 or later.
 - Thus, we are exploring the possibility to utilize the LAMPS detector elements for other experiments until the SCL2 is ready.
 - \rightarrow The neutron detector array will be used for the cluster structure Expt. at RIBF/RIKEN.
 - \rightarrow LAMPS TPC can be used for the EOS experiment at other Labs. (e.g., FRIB).
 - \rightarrow KHALA LaBr3 system is being used for the IDATEN experiment at RIBF.

• Any idea using the LAMPS detector elements are welcome!

INPC 2025

May 25-30, 2025 Daejeon, Republic of Korea

https://inpc2025.org

NUSYM 2024