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A scheme to overcome some usual semi-classical approximations in
transport approaches to HIC.

e Tracking wave-function evolution (widening, shape...).

e Preserving nucleonic correlations (avoiding splitting of a WF among
two nuclei).

e Describing a large range of energy regimes, starting from low energy.

e Improving stability.
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e.g. : tracking one external neutron (blue) in Ca40+Ca40 at 35AMeV :



Microscopic models for nuclear dynamics

e Rich variety of microscopic models at
low energy [Suener PPNP 2018,

Marusn-Renvuarp-Suraup Sivee Mobts oF Many-Feraion Systems 2010]
— Not easy extension to HIC conditions
[Sorensen PPNP 2024] :

two-body dissipation incompatible with
low-energy requirements, (non-locality,
orthogonality, single-Slater evolution...)

— Computational requirements differ

e Widely recurrent scheme for HIC
applications : Mean field (MF) vs
Molecular dynamics (MD)

[Ono Ranprur EPJA30 2006, Worrer PPNP 2022]

e Hereafter : familiar to unusual context
in transport models, flash review
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Usual scheme and approximations

A-body Shrédinger equation : fidy|®) = HP

general solution : |®) = ¥, ;AT 1))
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Usual approximations :

e Single Slater = deterministic

e Decoherence — locality

e Wigner transform = quantum operators — phase-space
e simple-basis decomposition (Gaussians)

e non-orthogonal system = overlaps

e freezing packet variances = dismissing non-local effects

e Quasiparticle lowest limit = e.g. BUU — QMD



Less conventional approaches

A-body Shrédinger equation : fidy|®) = HP
general solution : |®) = ¥; cf AT, i)

single-Slater approximation : |®) = A([]; l¢p:))

keeping non-local
orthogonal states

TDHF: p = Y4 ¢}l

decomposition into wavelets,
splines, h.o., Gaussians,... :
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Wigner transform

semi-classical approximation : f(x,k) = YN w;g;(x, k)



e DYWAN — decomposition into a dynamical orthogonal basis of
wavelets [Jouavir SesiLLE, g La Mora NPA 1996]

— But actually : wavelets refitted into Gaussians + decoherence +
Wigner tr. — weighted semiclassical quasipart. with variational
width [Besse PRC 2022, Dix Nuovo Cv 2022]

e back to delocalized wave functions without decoherence and
Wigner tr. [Divs PrD Te1-04072941 2022]

— recalls early AMD / FMD (with variational widths) for N— A
[FeLoaeier NPA 1990, NPA 1995]



e HO routine applied
to neutron/proton
Skyrme potentials

— HF states

— each level is
decomposed in as
many Gaussians as
the number of
extrema

— positive/negative
amplitude —
constructive/destructive
interference
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Searching for a new scheme

A-body Shrédinger equation : fidy|®) = HP
general solution : |®) = ¥; cf AT, i)
single-Slater approximation : |®) = A([]; l¢p:))
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decoherence approximation : lowest limit for N = 4

p = XN lcilPlgi gl ~—— Wigner transform
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e Problem with delocalized wave functions
— difficult to treat overlaps in presence of strong perturbations
(i-e. collision term)

= new fully orthogonal scheme : one Gaussian per nucleon used
as a weighting function to build a hierarchy of Hermite modes
— no need to fit the initial states

— obtain AMD / FMD (with variational widths) by restricting to
the weighting function
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Re-orthogonalization

e Re-orthogonalization procedure
— all scattered states after
collisions are re-orthogonalized to
the system.

e Example of orthogonality
anomalies before treatment :

— external levels mostly affected

— satisfactory orthogonality in the
overlap terget-projectile

ca+*Ca, 25AMeV, b=9fm, dr=0.2fm/c
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Knowing that,

¢ One-body density is not sufficient to build up N-N corr.

¢ No decoherence approximation was done

1) Mean-free path from collapsing at random two wave functions on their
one-body density distribution — collision probability

2) centroids boosted like in a semiclassical approach, rotated, translated
3) Pauli : not from phase space occupancy but from the probability of

finding an orthogonal solution for the scattered states = new variances
and new level scheme
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e effect of orthogonality, collisions, and NN-correlations =

1) exchange of neutrons and protons between projectile and target
2) three wave functions rearrange into a 3He cluster
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e tracking the average widths of the lower mode of each wave function.

e jumps are produced by collisions followed by a level rearrangement.
e trajectories moving away from the bunch : splits and emissions.

104Ne, 25AMeV, b=1fm
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New approach to overcome some common approximations
— still preliminary but successful in handling mean field and NN
correlations

Future applications in view

e very peripheral collisions

¢ low-density neck at Fermi energy in a less classical (hydrodynamic)
picture

e tracking particle correlations from an emitting source

e testing nuclear interaction in a wider range of energies within the
same model

Part of this work — PhD work of Hung Viet Dinh and post collaboration



