Quantifying Neutron-Proton Equilibration using Molecular Dynamics Codes

Andrea Jedele TU-Darmstadt

Overview

- Motivation
- Experimental Results
- Simulation Results
- Improvements

Neutron-proton (NZ) Equilibration

- Neutron-proton equilibration can be used to probe the nEoS
- Degree of equilibration determined by:

• Contact time

- \circ Strength of driving potential (Equation of State)
- Asymptotic values give insight into EoS
- Can we measure the equilibration as a function of time?

BUU simulations

Tsang et al, PRL 92, 06270 (2004)

Figures courtesy of A. Poulson

A. Poulse '16

Projectile-like

Figures courtesy of A. Poulson

A.Ponton'16

Figures courtesy of A. Poulson

A. Porlow 16

Figures courtesy of A. Poulson

A. Pontow 16

10. Poulson'16

Experimental Results

NIMROD 4π Array

- ⁷⁰Zn + ⁷⁰Zn, ⁶⁴Zn + ⁶⁴Zn, ⁶⁴Ni + ⁶⁴Ni @ 35 MeV/nuc
- Why NIMROD?
 - Large angular coverage
 - Great isotopic resolution
 - \blacksquare Z = 17 many detectors
 - $Z \ge 20$ in some Si-Si stacks

• Analysis cuts: • $Z_H \ge 12$ • $Z_L \ge 3$ • $21 \le Z_{total} \le 32$

L. May, PhD Thesis (2015)

Composition of two heaviest fragments

- 1st data set to measure HF
- As PLF* rotates:
 - Lighter fragment (**LF**) less neutron rich
 - Heavier fragment (**HF**) more neutron rich
- Evolution is exponential
 - Consistent with first-order kinetics
- The timescale for **HF** and **LF** are approximately equal
 - Most equilibration occurring within 60°

Rate of Equilibration and Conversion of Angle to Time

- Fit: $\Delta = a + b \cdot e^{-ca}$
 - a: equilibrium value
 - b: distance from equilibrium
 - NZ equilibration rate

•
$$t = \alpha / \omega$$

•
$$\omega = J \hbar / I_{eff}$$

- \circ ω : angular frequency
- J: angular momentum
- \circ I_{eff}: moment of inertia

2 touching spheres

Comparing ⁷⁰Zn + ⁷⁰Zn, ⁶⁴Zn + ⁶⁴Zn, ⁶⁴Ni + ⁶⁴Ni reaction systems

Reaction System	Z_H, Z_L Pairing	$k_H (\mathrm{zs}^{-1})$	$k_L (zs^{-1})$	$ au_{H}$ (zs)	τ_L (zs)
$^{70}Zn + ^{70}Zn$	12,7	$2\pm_{1}^{3}$	$4\pm_{2}^{4}$	$0.5\pm^{0.6}_{0.3}$	$0.3\pm^{0.6}_{0.1}$
⁶⁴ Zn+ ⁶⁴ Zn	12,7	$1\pm_1^2$	$2\pm_{2}^{3}$	$1\pm_1^2$	$0.4\pm^{0.5}_{0.3}$
⁶⁴ Ni+ ⁶⁴ Ni	12,7	$1\pm_2^2$	$2\pm_{1}^{3}$	$0.7 \pm ^{1}_{0.8}$	$0.5\pm^{0.3}_{0.6}$
$^{70}Zn + ^{70}Zn$	Average	$3\pm_{2}^{4}$	$4\pm_{2}^{4}$	$0.3\pm^{0.5}_{0.3}$	$0.3\pm^{0.3}_{0.2}$
⁶⁴ Zn+ ⁶⁴ Zn	Average	$4\pm_{3}^{5}$	$4\pm_{3}^{5}$	$0.3\pm_{0.2}^{0.4}$	$0.3\pm_{0.2}^{0.3}$
⁶⁴ Ni+ ⁶⁴ Ni	Average	$4\pm_{3}^{5}$	$4\pm_{3}^{5}$	$0.3\pm^{0.4}_{0.2}$	$0.3\pm^{0.3}_{0.2}$

Rodriguez Manso et al., PRC 95, 044604 (2017)

Simulations Zn-70 + Zn-70 @ 35 MeV/nuc

Simulations

• COMD

- \circ 10⁷ events
- \circ Simulation stopped at 1000 fm/c
- 3 different COMD interactions used
 - soft, stiff and super-stiff

• AMD

- \circ 10⁵ events
- \circ Simulation stopped at 300 fm/c
- 2 interactions used
 - soft and stiff
- GEMINI++
 - Used to de-excite fragments after simulation stopped

Charge and Mass Distributions for Total System

- Fairly good agreement between experimental and COMD/AMD distributions pre- and post-GEMINI
- Zig-zag distribution in experimental results due to isotopic resolution

Charge Distributions for $\rm Z_{H}$ and $\rm Z_{L}$

- Simulations passed through a NIMROD software filter
- Simulation distributions for the **LF** close experimental distributions
- Simulation over-predicts **HF** distribution at high Z
 - Results with GEMINI are closer
 - Expt results have cut off at Z=21 due to NIMROD isotopic limitations

Velocity Distribution

- Solid line is experimental results
- In all cases, the **HF** and **LF** are forward of mid-velocity
 - Fragments originate from the PLF*

Angular Distribution

- Yield enhancement at cos(α)
 =1 is replicated
 - Consistent with dynamical decay
- Enhancement pronounced for before GEMINI de-excitation
 - Gated on events from "different" source

"Same" vs "different" source

Angular Distributions

- Dynamical effects still present for different source
- Isotropic distribution seen for same source
- Focus on different source event for remainder of presentation

COMD soft interaction - LF

- Trend well reproduced for **LF**
- Without COMD:
 - $\circ \quad \text{Over-prediction of } \Delta$
 - Initial clustering
 - Ordering issue
- With GEMINI
 - Better agreement for LF
 - Ordering consistent with odd-even effects

COMD soft interaction - HF

- Trend is not reproduced for **HF**
- Without GEMINI:
 - \circ ~ Significant over-prediction of Δ
 - Minor increase in Δ
- With GEMINI:
 - Flat distribution
 - $\circ \quad \Delta \text{ in good agreement with expt results}$

Comparing stiffnesses - LF

- Exponential trend reproduced well
- Extent of equilibration is consistent

 \circ ~ 0.5 neutrons

- Ordering where stiffest is least neutron-rich
 - Consistent with largest potential barrier for super-stiff interaction

Comparing stiffnesses - HF

- Exponential trend not reproduced
- Flat distribution for stiffest interaction
 - $\circ \quad \begin{array}{l} \text{Increase in } \Delta \text{ as} \\ \text{interaction becomes} \\ \text{softer} \end{array}$
- Ordering issues
 - Most neutron-rich is also soft interaction
 - Inconsistent with potential barrier picture

Asymptotic Values

- Fit: $\Delta = a + b \cdot e^{-ca}$
- Even-odd trend reproduced with GEMINI de-excitation
- Under prediction of asymptotic values
 - Most prevalent for results with GEMINI

Rate Constants

- Good consistency for all **LF** equilibrium values with each other
- No notable difference seen for the various interactions

Total COMD Results with and without GEMINI

- Experimental results are for all Z_H and Z_L combined
- In all cases, extent of **LF** equibration is over-predicted
- **HF** is inconsistent
 - S-shaped behavior
 - Decrease in GEMINI
 - Excitation energy input?

AMD results

- Exponential trend reproduced for **LF**
 - Faster rate for stiff interaction
 - S-shaped distribution for results with GEMINI
 - Excitation energy input?
- Exponential trend is reproduce for **HF** without GEMINI
 - Extent of equilibration not as large as expt results
 - Flat distribution for results with GEMINI

Rate Constants

- κ is rate constant for all Z_{H} and Z_{I} combined
- Consistency in $\kappa_{\rm H}$ between AMD soft and expt values
- Increase in $\kappa_{\rm L}$ as a function of interaction stiffness
 - Largest for COMD without GEMINI
- Inconsistency between κ_{I} for simulation and expt

Looking further at Experimental Data

- Simulation data not highly affected by Z selection
- Expt data is **highly** dependent on the Z selection!
 - Increase of approx. 0.1 Ο $deg^{-1} b/n k_{I} (Z_{H}, Z_{L})$ and $k_{I}(Z_{I})$
 - Most significant Ο difference between $\kappa_{\rm I}$ and $k_{I}(Z_{I})$

Velocity Distributions

- Distribution dominated by $Z_L=3, 4$
- Enhanced relative contribution at α>50° from larger Z_L values
 - $\circ \quad \text{Larger } Z_L \text{ has lower } \Delta$

Open-ended Questions or Improvements

FAZIA?;)

Improvements

- 1. Reaction plane versus detector resolution?
- 2. Ternary decay versus 'string of pearls'?
- 3. Number of pearls?
- 4. Missing large portion of charge

Summary

- Used COMD and AMD with and without GEMINI to simulate NZ Equilibration
- Good agreement between AMD and Expt results for LF and HF
- Exponential trend for **LF** reproduced by COMD, but the **HF** is not
- Issues with GEMINI washing out signature of **HF**
- Experimental results very sensitive to charge selection!

Collaborators

- Yennello Research Group
 - K. Hagel, A.B. McIntosh, A. Abbott, A. Hannaman, B. Harvey, A. Hood, J. Gauthier, Y. Lui, L. McIntosh, M. Sorensen, Z. Tobin, R. Wada, M. Youngs, S.J. Yennello
- Collaborators (Indiana U.)
 - S. Hudan, R. De Souza

Merci! Questions?

Back-up Files

Correct Pearls?

Angular resolution of NIMROD

- θ resolution is good
- φ resolution is 15 or 30° depending on the position
 - For telescopes with Si-Si-CsI, all quadrants of NIMROD read out
 - For Si-CsI telescopes, quadrants in same ring, same detector were tied together

Photo courtesy of S. Wuenschel

Velocity distributions

- Both fragments predominantly forward of mid-velocity
 - Fragments originated from PLF*
- Heavier fragment is on average faster
 - Consistent with dynamical decay

Target effects and simulations Zn + Al, Zn, Bi @ 45 MeV/nuc.

- Consistent with Hudan
- NZ composition depends on NZ target composition

- Agrees with data
- Dependent on nEoS stiffness

Brown et al. PRC 87, 061601(R) (2013) Stiefel et al. PRC 90, 061605(R) (2014)

Cos(alpha) Distribution for ZH=14 and ZL=10

0.08 0.07 0.06 Normalized Yield 0.03 0.02 0.01 0_1 -0.8 -0.6 -0.4 -0.2 0.2 0.6 0.8 2 0 Cos(alpha) 0.4

Angular Distribution

- Strong alignment
 - Consistent with dynamical decay
 - Decay timescale is faster than rotational period

Asymptotic Values

- Asymptotic values for all Z_{H} , Z_{L} pairings
- Black diamonds are the corrected asymptotic values assuming 1 n offset

Rate Constants

• Rate constants for all Z_{H} , Z_{L} pairings

Angular Momentum from out-of-plane angular distributions

- Evaporative emission of alpha particles used
- Data fit with Gaussian distribution
- GEMINI simulations:
 - J = 10ħ at E*/A=0.8 MeV
 - J = 50ħ at E*/A=1.2 MeV
 - J=22ħ (geometric mean) used

