Study of nuclear symmetry energy from isospin transport in intermediate energy heavy-ion reactions

Swagata Mallik

Variable Energy Cyclotron Centre, Kolkata, India

Collaborators: C.Ciampi, F. Gulminelli, J.Frankland, A.Chbihi, D.Gruyer, R.Bougault, N.Le Neindre

NUSYM2024

Plan of the Talk:-

Introduction

- > BUU model for heavy ion reaction
- Isospin Transport
- Effect of EoS on isospin transport
- Isospin Current Density
- Summary

Nuclear Equation of state (EoS) from heavy ion reaction:-

Theoretical models of intermediate energy heavyion reactions:-

□ Statistical Models:-

Basic Assumption: Equilibrium @ freeze-out

- Canonical Thermodynamical Model (CTM)
- Statistical Multifragmentation Model (SMM)
- Grand Canonical Model (GCM)

etc....

Dynamical Models:-

Time evolution of projectile and target nucleons

Boltzmann Uehling Uhlenbeck (BUU) Model

Quantum Molecular Dynamics (QMD) Model

Anti-symmetrized Molecular Dynamics (AMD) Model
 Other Models:-

HIPSE
Lattice Gas Model
Percolation Model
EPAX

etc....

Boltzmann-Uehling-Uhlenbeck model (BUU@VECC-McGill) for heavy ion collision :-

✤Based on the BUU equation,

$$\begin{split} \frac{\partial f_i}{\partial t} + \vec{v}_i . \vec{\nabla}_r f_i - \vec{\nabla}_r U . \vec{\nabla}_p f_i &= \frac{1}{(2\pi)^6} \int d^3 \vec{p}_j d^3 \vec{p}_{j'} d\Omega \frac{d\sigma}{d\Omega} v_{ij} \\ &\times \left\{ f_{i'} f_{j'} (1 - f_i) (1 - f_j) - f_i f_j (1 - f_{i'}) (1 - f_{j'}) \right\} \\ &\times (2\pi)^3 \delta^3 (\vec{p}_i + \vec{p}_j - \vec{p}_{i'} - \vec{p}_{j'}) \end{split}$$

where, $f_i \equiv f(\vec{r}_i, \vec{p}_i, t)$

Can not be solved exactly, test particle method (N_{test}=100) is used for numerical calculation.

1. Initialization :-

Initial positions and momenta of the test particles are selected by Monte-Carlo simulations of initial phase space density (obtained from variational method over Myer's density profile).

$$\rho(r) = \rho_M \left[1 - \left(1 + \frac{R}{a} \right) \exp\left(-\frac{R}{a} \right) \frac{\sinh(r/a)}{r/a} \right]$$

$$\rho(r) = \rho_M \left[\left(\frac{R}{a} \right) \cosh\left(\frac{R}{a} \right) - \sinh\left(\frac{R}{a} \right) \right] \frac{\exp(-r/a)}{r/a} \quad r > R$$

r≤R

2. Time Evolution :-

2.a: Vlasov Propagation:-

Propagation of the test particles are calculated by,

$$\frac{d\vec{r_i}}{dt} = \vec{v}_i$$

Ref: S. Mallik, G. Chaudhuri and F. Gulminelli, Phys. Rev. C. 100, 024611 (2019)

Mean field potential is calculated accurately by using Lattice Hamiltonian Method.

Meta-modelling for the EoS (ELFc):-

$$e(\rho,\delta) = \left(E_{sat} + \frac{1}{2!}K_{sat}x^{2} + \frac{1}{3!}Q_{sat}x^{3} + \frac{1}{4!}Z_{sat}x^{4} + \dots\right) + \left(E_{sym} + L_{sym}x + \frac{1}{2!}K_{sym}x^{2} + \frac{1}{3!}Q_{sym}x^{3} + \frac{1}{4!}Z_{sym}x^{4} + \dots\right)\delta^{2}$$

where,
$$x = (\rho - \rho_0)/3\rho_0 \quad \delta = (\rho_n - \rho_p)/(\rho_n + \rho_p)$$

Energy per particle of homogeneous nuclear matter at zero temperature in ELFc

$$\begin{aligned} e(\rho,\delta) &= t(\rho,\delta) + v(\rho,\delta) \\ &= \frac{t_0}{2} \left(\frac{\rho}{\rho_0} \right)^{2/3} \left[(1 + \kappa_0 \frac{\rho}{\rho_0}) f_1(\delta) + \kappa_{sym} \frac{\rho}{\rho_0} f_2(\delta) \right] \\ &+ \sum_{n=0}^N \frac{1}{n!} (v_n^{is} + v_n^{iv} \delta^2) x^n + (a_N^{is} + a_N^{iv} \delta^2) x^{N+1} \exp(-\frac{b\rho}{\rho_0}) \end{aligned}$$

where,
$$f_1 = \{(1+\delta)^{5/3} + (1-\delta)^{5/3}\}$$
 $f_2 = \delta\{(1+\delta)^{5/3} + (1-\delta)^{5/3}\}$

Meta-modelling for the EoS (ELFc):-

Model parameters can be linked with a one-to-one correspondence to the usual EoS empirical parameters via

$$v_0^{is} = E_{sat} - t_0(1 + \kappa_0)$$

$$v_1^{is} = -t_0(2+5\kappa_0)$$

$$v_2^{is} = K_{sat} - 2t_0(-1 + 5\kappa_0)$$

$$v_0^{iv} = E_{sym} - \frac{5}{9}t_0 \left[1 + (\kappa_0 + 3\kappa_{kym})\right]$$

$$v_1^{iv} = L_{sym} - \frac{5}{9}t_0 \left[2 + 5(\kappa_0 + 3\kappa_{kym})\right]$$

$$v_2^{iv} = K_{sym} - \frac{10}{9} t_0 \left[-1 + 5(\kappa_0 + 3\kappa_{kym}) \right]$$

$$v_3^{is} = Q_{sat} - 2t_0(4 - 5\kappa_0)$$

$$v_3^{iv} = Q_{sym} - \frac{10}{9} t_0 \left[4 - 5(\kappa_0 + 3\kappa_{kym}) \right]$$

$$v_4^{is} = Z_{sat} - 8t_0(-7 + 5\kappa_0)$$

$$v_4^{iv} = Z_{sym} - \frac{40}{9} t_0 \left[-7 + 5(\kappa_0 + 3\kappa_{kym}) \right]$$

$$\rho_{0}, E_{sat}, K_{sat}, Q_{sat}, Z_{sat} \\ E_{sym}, L_{sym}, K_{sym}, Q_{sym}, Z_{sym} \}$$
 Different for different EoS

Ref: J. Margueron, R. H. Casali and F. Gulminelli, Phys. Rev. C. 97, 025805 (2018) 8

2.b: Collision:-

$$(\vec{r}, \vec{p}_i, t), (\vec{r}, \vec{p}_j, t) \rightarrow (\vec{r}, \vec{p}_{i'}, t), (\vec{r}, \vec{p}_{j'}, t)$$

Collision Criteria:

$$\sqrt{(\Delta \vec{r})^2 - \left(\frac{\Delta \vec{r} \cdot \vec{p}}{p}\right)^2} \le \sqrt{\frac{\sigma_{nn}}{\pi}} \qquad \left|\frac{\Delta \vec{r} \cdot \vec{p}}{p}\right| \le \left(\frac{p}{\sqrt{p^2 + m_1^2}} + \frac{p}{\sqrt{p^2 + m_2^2}}\right) \frac{\delta t}{2}$$

Ref: G. F. Bertsch and S. Das Gupta , Phys. Rep. 160 (1988) 189 Fluctuation in BUU model:-

• If collision criteria is satisfied, then particle 1 and 2 will suffer momentum change Δp_1 and Δp_2 respectively (if the test particles are not Pauli blocked.).

Since in scattering the whole nucleon moves, not part of it so,

 $(N_{test}-1)$ test particles closest in phase space to 1 and

(N_{test}-1) test particles closest in phase space to 2 will also suffer momentum change Δp_1 and Δp_2 respectively.

Ref: W. Bauer, G. F. Bertsch and S. Das Gupta, Phys. Rev. Lett. 58, 863 (1987) S. Mallik, S. Das Gupta and G. Chaudhuri , Phys. Rev. C. 91, 034616 (2015) **3. Clusterization in BUU:-**

Two test particles (of position \vec{r}_i and \vec{r}_j) are part of the same cluster if

$$\left|\vec{r}_i - \vec{r}_j\right| \le 2 \,\mathrm{fm}$$

Isospin Transport :-

> Transfer of isospin from more isospin asymmetric system to less isospin asymmetric system

Time evolution :-

N/Z of Quasiprojectile :-

Time=300 fm/c

Isospin Transport Ratio:-

$$R_{i}(x) = \frac{2x_{i} - x_{A+A} - x_{B+B}}{x_{A+A} - x_{B+B}}$$

A and B are neutron rich and neutron deficient nucleus respectively.

Ref: F. Rami et. al, Phys. Rev. Lett. 84, 1120(2000)

Experimental measurement @MSU:-

Isoscaling: Ratio of yields of from two different reactions

Theoretical Study:-

N/Z of projectile residue with stiff, moderate and soft EoS

$$\epsilon_{sym}(\rho) = \frac{C_{kin}}{2} \left(\frac{\rho}{\rho_0}\right)^{2/3} + \frac{C_{pot}}{2} \left(\frac{\rho}{\rho_0}\right)^{\gamma}$$

Ref: M. B. Tsang et. al, Phys. Rev. Lett. 92, 062701 (2004)

Open question:-

- > How R_i varies for different observables: Free nucleons, Quasiprojectile (QP)?
- Dependence on different realistic EoS ?

Identification of projectile like fragment (PLF):-

Studied Reaction:- 58Ni+ 64Ni @52 MeV/nucleon (b=7fm)

BUU calculation @ Projectile frame (Target is moving along -z direction)

I~1 i.e. thermalization for t≥100 fm/c. 12

Isospin transport ratio for Ni+Ni reactions:-

$$R_{i} = \frac{2x_{i} - x_{64} x_{Ni} - x_{58} x_{Ni} - x_{58} x_{Ni}}{x_{64} x_{Ni} - x_{58} x_{Ni} - x_{58} x_{Ni} + x_{58} x_{Ni}}$$

Studied Reaction: ⁶⁴Ni+⁶⁴Ni, ⁶⁴Ni+⁵⁸Ni, ⁵⁸Ni+⁶⁴Ni, ⁵⁸Ni+⁵⁸Ni

(Transport calculation in projectile frame with Sly5 EoS)

Time dependence:-

Entrance channel dependence:-

E_p=52 MeV/nucleon b=7 fm

t=300 fm/c

Sensitivity of symmetry energy to Isospin transport ratio:-

Varying Parameters									
Parameter	Minimum	SLY5	Maximum						
E _{sym} (MeV)	26.83	32.03	38.71						
L _{sym} (MeV)	29.2	48.3	122.7						
K _{sym} (MeV)	-394	-112	213						

Uncertainty due to $\mathbf{E}_{\text{sym}}\,\mathbf{L}_{\text{sym}}$ and $\mathbf{K}_{\text{sym}}\text{:-}$

14

Ref: S. Mallik, F. Gulminelli and D. Gruyer; Jour. Phys. G. 49, 015102 (2021)

15

Isospin transport ratio from BUU calculation with different EoS:-

SAMI: X. Roca-Maza et. al., Phys. Rev. C 86, 031306(R) (2012).

16

Isospin transport ratio: Comparison with experimental data:In collaboration with INDRA-FAZIA

Isospin current density:-

Studied Reaction: 64Ni+58Ni@Ep=32 MeV/nucleon b=5 fm

Time evolution in Centre of mass frame

Time evolution in principal axis frame

Neutron and proton current density inside a sphere in neck region (@principal axis frame)

$$J_w^n = \frac{1}{N_{grid}} \sum_{i=1}^{N_{grid}} \rho_{i,n} v_{i,w}^{pa}$$

$$J_w^p = \frac{1}{N_{grid}} \sum_{i=1}^{N_{grid}} \rho_{i,p} v_{i,w}^{pa}$$

N_{grid}=No. of grid points inside the sphere

w=x,y and z direction 18

Isospin current density (Contd..):-

Studied Reaction: ⁶⁴Ni+⁵⁸Ni@E_p=32 MeV/nucleon b=5 fm

<u>Conclusions</u>:-

□ Isospin transport ratio calculated from quasiprojectile as well as free nucleon are not identical but both are affected by the density dependence of symmetry energy.

Sensitivity of nuclear EoS on quasiprojectile is more compare to free nucleon.

□ In order to reduce the error bar of nuclear EoS, BUU results with different realistic EoS are being compared with INDRA-FAZIA data of isospin transport ratio of the quasiprojectile.

□ Current densities are being calculated for estimating the precise region of sub-saturation densities responsible for isospin diffusion in heavy-ion reactions around the Fermi energy domain.

The work is in progress......

Mean Field potential from meta-modelling for the EoS:-

Mean field potential for neutron/proton (N=4)

$$U_{\frac{n}{p}} = (v_0^{is} + v_0^{iv}\delta^2) + \sum_{n=1}^4 \frac{n+1}{n!} (v_n^{is} + v_n^{iv}\delta^2) x^n$$

+ $\frac{1}{3} \sum_{n=1}^4 \frac{1}{(n-1)!} (v_n^{is} + v_n^{iv}\delta^2) x^{n-1} \pm 2\delta(1 \mp \delta) \sum_{n=1}^4 \frac{1}{n!} v_n^{iv} x^n x^{N+1}$
+ $\left[(a_4^{is} + a_4^{iv}\delta^2) \{\frac{5}{3}x^4 + (6-b)x^5 - 3bx^6\} \pm 2\delta(1 \mp \delta) a_4^{iv} x^5 \right]$
 $\times \exp\{-b(1+3x)\} + \frac{3c}{\rho_0^{2/3}} \nabla^2 x$

Mean field term due to density dependence of the effective mass

$$U_q^{eff} = \sum_{q=n,p} \tau_q \frac{\partial}{\partial \rho_q} \left(\frac{m_q}{m_q^*} \right) = \tau_q \frac{\kappa_0 + \kappa_{sym}}{\rho_0} + \tau_q^{'} \frac{\kappa_0 - \kappa_{sym}}{\rho_0}$$

10 EoS empirical parameters

$$\rho_{0}, E_{sat}, K_{sat}, Q_{sat}, Z_{sat}$$

$$E_{sym}, L_{sym}, K_{sym}, Q_{sym}, Z_{sym}$$

> 2 parameters for density dependence of effective mass $|_{\kappa_0}, \kappa_{sym}|$

Effect of Secondary decay:-

GEMINI++ Calculation by D. Gruyer

MSU Work:-

Energy parameterization:-

$$\epsilon_{sym}(\rho) = \frac{C_{kin}}{2} \left(\frac{\rho}{\rho_0}\right)^{2/3} + \frac{C_{pot}}{2} \left(\frac{\rho}{\rho_0}\right)^{\gamma}$$

Symmetry energy behavior:-

Isospin transport ratio:-

Ref: M. B. Tsang et. al, Phys. Rev. Lett. 92, 062701 (2004)

Nuclear EoS Parameters												
EoS	ρ ₀ (fm ⁻³)	E _{sat} (MeV)	K _{sat} (MeV)	Q _{sat} (MeV)	Z _{sat} (MeV)	E _{sym} (MeV)	L _{sym} (MeV)	K _{sym} (MeV)	Q _{sym} (MeV)	Z _{sym} (MeV)		
abinitio-1	0.1890	-16.92	241	-125	1281	34.57	48.5	-224	-311	-197 4		
abinitio7	0.14	-13.23	192	-139	901	28.53	43.9	-144	-95	-2149		
SAMI	0.1587	-15.93	245	-339	1331	28.16	43.7	-120	372	-2179		
NL3	0.1480	-16.24	271	198	9302	37.35	118.3	101	182	-3981		
SGII	0.1583	-15.59	215	-381	1742	26.83	37.6	-146	330	-1891		
Sly5	0.1604	-15.98	230	364	1592	32.03	48.3	-112	501	-3087		